
10/1/04

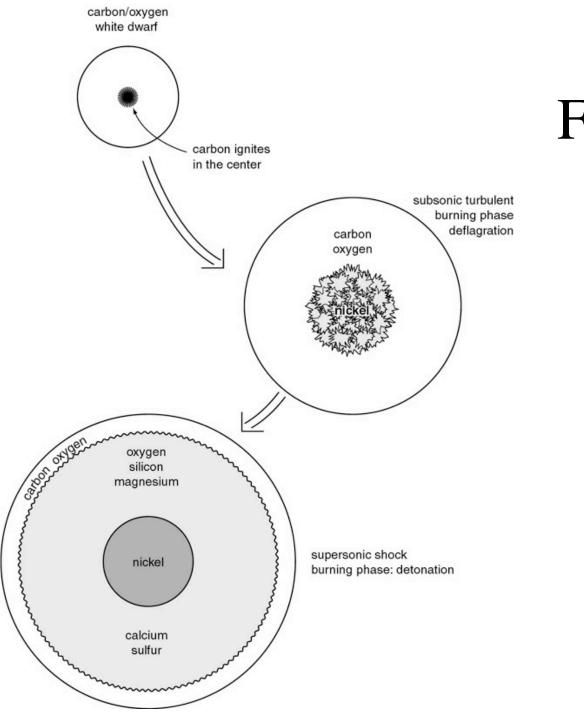
Second Exam - Chapters 6, 7, Friday, October 8

News? Rutan Rocket SpaceShip1 makes first attempt at two flights to space in two weeks.

Pic of the day

Toutatis

Models based on Chandrasekhar mass C/O white dwarfs give observed composition structure!


Large quantum pressure -- high density and temperature overcome charge repulsion - very unregulated - ignite Carbon \Rightarrow runaway \Rightarrow total explosion, no neutron star or black hole.

Models give thorough burning to iron on inside, only partial burning of C and O leaving O, Mg, Si, S, Ca in outer layers.

Two stages to explosion:

Deflagration - slower than speed of sound, like a flame Detonation - supersonic shockwave, faster than the speed of sound - like a stick of dynamite

All data, UV, optical, IR are consistent with this picture

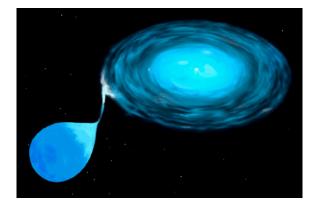


Figure 6.4

Type Ia *are* Chandrasekhar mass carbon/oxygen white dwarfs How does nature grow a white dwarf to 1.4 M_{\odot} ? Classical Novae: Problem with losing mass from white dwarf

Recurrent Novae: do seem to have large mass white dwarfs, encouraging.

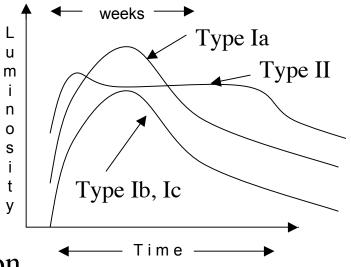
Probably a binary, everyone assumes so. No direct evidence, some recent indirect hints.

Hint from polarization - not quite round -- why?

Need ~ 1 per 300 years in Galaxy like Milky Way

Recurrent Novae → how to get to 1.3 solar masses, as seen currently in U Sco?

Are there enough recurrent novae to give one explosion per 300 years?


Super Soft X-ray Sources - red giant transferring to white dwarf fast enough to keep H hot, thermal pressure, regulated burning, $H \rightarrow He \rightarrow C/0$ on outside, add carbon and oxygen to the white dwarf, the white dwarf will grow.

Enough? Recent computer studies \rightarrow yes?

Binary white dwarfs, gravitational radiation, spiral together Enough? Make some, not all, Type Ia

Light Curves

Ejected matter must expand and dilute before photons can stream out, supernova becomes bright: *must expand to radius ~ 100 × Earth orbit*

Maximum light output ~ 2 weeks after explosion

Type II in red giants have head start, radius already ~ Earth's orbit light on plateau comes *heat of explosion*

Ejected matter cools as it expands: for white dwarf (Type Ia) or bare core (Type Ib, Ic) tiny radius ~ Earth, must expand huge factor > 1,000,000 before sufficiently transparent to radiate *All heat of explosion dissipated in expansion By time they are transparent enough to radiate, there is no original heat left to radiate*

Need another source of energy for Type I a, b, c to shine at all!

Type Ia start with C, O number of protons equal to number of neutrons

Iron has 26p 30n *not equal*

C, O burn too fast (~1 sec) for weak nuclear force to convert p to n (\$1.2.1)

Similar argument for Type Ib, Ic, core collapse. Shock wave hits silicon layer with #p = #n, burns too quickly for weak nuclear force to convert p to n.

Fast explosion of C/O in Type Ia, shock hitting layer of Si in Type Ib, Ic make element closest to iron (same total p + n) with #p = #n

Nickel-56: 28p 28n total 56 -- Iron-56: 26p 30n total 56

Ni-56 is unstable to radioactive decay

Nature wants to produce iron at bottom of nuclear "valley" decay caused by weak force $p \rightarrow n$

Nickel -56	$\frac{\gamma\text{-rays}}{\text{heat}}$	Cobalt-56	$\frac{\gamma \text{-rays}}{\text{heat}}$	Iron-56
28p	"half-life"	27p	"half-life"	26p
28n	6.1 days	29n	77 d	30n

Secondary heat from γ -rays makes Type I a, b, c shine