AST 301
Homework \#8
Due Friday April 15

1. The Sun is about 25,000 ly from the center of the Milky Way galaxy. It orbits around the center with a speed of about $225 \mathrm{~km} / \mathrm{s}$.
a) What is the distance of the Sun from the center in kilometers? In AU?
b) What is the circumference of the Sun's orbit around the center in kilometers?
c) What is the period of the Sun's orbit in seconds and in years? Hint: Use the distance $=$ speed x time formula.
d) Use Kepler's $3^{\text {rd }}$ law to calculate the mass (in solar masses) inside of the Sun's orbit. Hint: make sure you use the period and radius of the orbit in the proper units.
2. 3 C 48 was the first quasar discovered. It has a redshift of $\mathrm{z}=\Delta \boldsymbol{\lambda} / \boldsymbol{\lambda}=0.37$.
a) Calculate the speed at which 3C48 moves away from us by using the non-relativistic Doppler shift formula (By the Numbers 6-2).
b) Use Hubble's law to calculate the distance to 3C48. Use a Hubble's constant of $70 \mathrm{~km} / \mathrm{s} / \mathrm{Mpc}$. Give your answer both in Mpc and in light-years.
3. If the luminosity of 3 C 48 is $10^{13}$ times the luminosity of $\alpha$ Cen, which is about 1.3 pc from us, how does the flux (apparent brightness) of 3C48 compare to the flux of $\alpha$ Cen? Hint: Ask how many times more distant 3C48 is and how many times fainter this would make it if it had the same luminosity as $\alpha$ Cen. Then combine the effects of distance and luminosity.
