Disappearance of Atoms

- As we go back in time, temperature goes up. - T=2.73(1+z) K
- At *z*~1100, *T*~3000 K
 - $-\,$ About the same temperature as M-dwarfs
- Ionization of hydrogen atoms
 - H + photon \rightarrow p + e⁻
 - Inverse process: recombination $p + e^- \rightarrow H + photon$
- Electrons scatter photons in all directions
 - Similar to the interior of the Sun
 - Photons cannot travel freely
 - The universe becomes "opaque"
- Therefore, $z \sim 1100$ is the edge of the "visible universe"
 - $-\,$ We cannot look back beyond this epoch using light
 - The epoch called the *decoupling epoch*.

Radiation Era

- In the present universe, radiation energy/matter energy is about 1/3200.
- At the decoupling epoch, this ratio is about 1/3.
- At *z*~3200, the radiation energy equals the matter energy the matter-radiation equality
 - *z*>3200: Radiation Era
 - *z*<3200: Matter Era
- In the radiation era,
 - $\rho t^2 \sim 10^6$
 - $tT^2 \sim 10^{20}$
 - ρ in g/cm³, *t* in seconds, and *T* in Kelvin.
- The radiation era ends at age about 30,000 years.
 - The decoupling epoch is $\sim 380,000$ years.

Nucleosynthesis

- The origin of helium
 - About 25% of the mass of atoms in the universe is helium.
 - 85% is hydrogen
 - Where did helium come from?
 - Stars fuse hydrogen into helium
 - This was incredibly inefficient process
 - Stars could fuse **only 2%** of all hydrogen in the universe into helium not enough!!
- The first three minutes
 - $T \sim 1$ billion K
 - The universe was a very efficient nuclear reactor
 - "Big-bang nucleosynthesis"

Synthesize Helium

- $n + p \rightarrow D + photon$
 - When *T*>1 billion K, photo-dissociation process
 D + photon → n + p also occurs frequently and destroys the formed deuterium
 - One has to wait until temperature drops below 1 billion K: t~100 seconds
- $D + D \rightarrow T + p$
 - T is tritium (³H; one proton and two neutrons)
- $T + D \rightarrow {}^{4}He + n$

Deuterium

- The amount of deuterium depends on density of nuclei, or Ω_{atoms} . How?
- Low Ω_{atoms}
 - Collision of deuterium, $D + D \rightarrow T + p$, does not occur frequently
 - A larger fraction of D survives

• High Ω_{atoms}

– More collision \rightarrow A smaller fraction survives

Consumption of Neutrons

- To form D, both n and p are required
 - However, n slowly decays via $\beta\text{-decay:}$
 - $n \rightarrow p + e^{-} + v_e$
 - Therefore, n is outnumbered by p, and the amount of helium synthesized is essentially determined by the amount of neutrons
 - n:p = 1:7
- This n/p ratio explains He:H=1:3

•This is one of the most important predictions of the Big- after bang model synthesis

•The prediction is robust – it does not depend very much on cosmological parameters

...yet we need stars...

- The Big-bang nucleosynthesis cannot synthesize any elements heavier than Lithium.
 – Density of nuclei was too low
- The initial proposal of the BBN was abandoned because of this "failure"
- Later it was realized that heavier elements must be synthesized by fusion in stars
 - Although temperature is low (10 million K vs 1 billion K), density is high (100 g/cm³ vs 20 µg/cm³)