Cosmological Parameters

- Recall the cosmological equations
 - $-H^2 = (8\pi G/3)\rho + C/L^2 + \Lambda/3$: Friedmann-Lemaitre eq.
 - $-a = -(4\pi G/3)\rho L + \Lambda L/3$
- : Acceleration eq.

- L=Rl

- : Expansion of length
- These equations can be re-written as $- H^2 = (8\pi G/3)\rho - k/R^2 + \Lambda/3$
 - $-a/R = (4\pi G/3)\rho \Lambda/3$
- Dividing both sides by H^2 , we get
 - $1 = (8\pi G/3H^2)\rho k/(R^2H^2) + \Lambda/(3H^2)$ - q = -a/(RH^2) = (4\pi G/3)(\rho H^2) - \Lambda/(3H^2)
- "Cosmological Parameters" are related by $-1 = \Omega_m + \Omega_k + \Omega_A$
 - $-1 \Omega_{\rm m} + \Omega_{\rm k} + \Omega_{\rm k}$ $q = \Omega_{\rm m}/2 \Omega_{\rm k}$

Many Universes (Fig 18.13 on pp.367)

- Friedmann universes (No dark energy)
 - $-\Omega_{\Lambda}=0$
 - $-1 = \Omega_m + \Omega_k$
 - $\Omega_k > 0$: "Open" universe
 - $\Omega_k = 0$: "Flat" universe (a.k.a. Einstein-de Sitter universe: $\Omega_m = 1$)
 - $\Omega_k < 0$: "Closed" universe
 - $-q = \Omega_{\rm m}/2$
 - q > 0: Expansion always decelerates in Friedmann universes
 - q=1/2 for the Einstein-de Sitter universe
- Friedmann-Lemaitre universes
 - $\Omega_{\Lambda} > 0$
 - $-1 = \Omega_m + \Omega_k + \Omega_\Lambda$
 - Fate of the universe depends on Ω_Λ as well as Ω_k
 - $-q = \Omega_{\rm m}/2 \Omega_{\Lambda}$
 - q can be negative: acceleration is possible

Expansion History

- Cosmological parameters evolve with time.
 - Different terms are dominant at different times.
 - $-H^2 = (8\pi G/3)\rho k/R^2 + \Lambda/3$
 - Matter density, ρ , decreases as $1/R^3$
 - k/R^2 decreases as $1/R^2$
 - Λ is constant
 - Therefore, all universes look like the Einstein-de Sitter universe in the past.
 - But, the present and future behavior can be very different depending on cosmological parameters.
 - Values of the present-day cosmological parameters:
 - $-\Omega_{\rm m}=0.3$
 - $-\Omega_{\Lambda}=0.7$
 - $-\Omega_{k}=0$