Escape Velocity Expanding cosmic sphere V• Let's pick a small spherical region (filled with • Escape velocity is given by matter) in the universe. $-(V_{\text{escape}})^2=2GM/L$ V• The mass is $M=(4\pi G/3)\rho L^3$ – Radius: L V $-(V_{\text{escape}})^2 = (8\pi G/3)\rho L^2$ - Mass: M – Density: ρ VV• Is V larger or smaller than V_{escape} ? - Expansion Velocity: V $- V < V_{escape}$: the region will recollapse in the future V $-V = V_{escape}$: the region will expand forever $-V > V_{escape}$: the region will expand forever • Will this region expand forever? - It depends on the expansion velocity, V. Acceleration Friedmann Equation • In addition to the Friedmann equation, • Let's write the expansion velocity using the $-H^{2} = (8\pi G/3)\rho + C/L^{2}$ escape velocity as follows: which describes the expansion velocity, there is the second equation $- V^2 = (V_{escape})^2 + C$ which describes the acceleration of the expansion: - The constant, "C", determines the fate of the $-a = -(4\pi G/3)\rho L$ region: • Notice the negative sign in front: the presence of matter always *decelerates* (a < 0) the expansion. • C<0: recollapse • C=0, C>0: expand forever • Einstein did not like this! • Recalling the form of the escape velocity, one - Einstein wanted the universe to be static - neither expanding or obtains the following "Friedmann equation": contracting - however, this equation does not permit it. - He added the "cosmological constant", Λ , to this equation in order $-V^2 = (8\pi G/3)\rho L^2 + C$ to cancel the effect of matter: - The velocity-distance relation, V=HL, gives the • $a = -(4\pi G/3)\rho L + \Lambda L/3 = 0$ most popular form of the Friedmann equation: - This Λ is what Einstein called later "the biggest blunder". $-H^{2} = (8\pi G/3)\rho + C/L^{2}$

• This equation determines how the universe expands

and what the fate of the universe is --- extremely

important in cosmology!

• More importantly, Λ can *accelerate* the expansion, unlike the ordinary matter.

The fate of the universe

- We have now two fundamental cosmological equations:
 - $-H^2 = (8\pi G/3)\rho + C/L^2 + \Lambda/3$
 - $-a = -(4\pi G/3)\rho L + \Lambda L/3$
- These equations determine how the scale factor, R, changes with time. (remember *L*=*Rl*)
 - We have three quantities to specify
 - ρ, C, Λ
 - Here is the bottom line: we need to determine these quantities by observations.
 - These are called the "cosmological parameters" and determination of the cosmological parameters has been the most important task in cosmology as they determine the evolution of R in the past and in the future.

Where is relativity?

- The derivations of the Friemann equation so far did not use relativity it was totally Newtonian.
- Where is relativity?
 - In Newtonian picture, it is not clear what C really means or what determines *C*.
 - In relativistic picture, *C* is actually related to the geometry of space:
 - C<0: spherical geometry
 - C=0: flat geometry
 - C>0: hyperbolic geometry
 - In other words, the geometry of the universe determines the fate of the universe!!
 - Spherical geometry: recollapse
 - Flat or hyperbolic geometry: expand forever