The age of the universe

- The age of the universe
 - Time elapsed from the birth of the universe (R=0) to the present epoch (R=R_{present}).
 - Therefore, it depends on how R changes with time.
- The latest determination = 13.7 billion years
 - This estimate was made possible by knowing the expansion of the universe accurately.

Three Redshifts

- Redshift wavelength of light is stretched
 - c.f., Blueshift wavelength of light is squeezed
- Doppler Redshift
 - Wavelength is stretched by relative motion
 - -z = (relative velocity)/c
 - This formula is correct only when velocity is much smaller than c
- Gravitational Redshift
 - Wavelength is stretched by strong gravity
 - $-z = (1/2)[(escape velocity)/c]^2$
 - This formula is correct only when velocity is much smaller than c
- Expansion Redshift
 - Wavelength is stretched by expansion of space
 - -z = (scale factor at reception)/(scale factor at emission) 1

Deceleration and Acceleration

- Time evolution of R is classified as follows.
 - Constant speed expansion
 - Decelerating expansion
 - Accelerating expansion
- The latest observations suggest that the expansion was
 - accelerating in the very early universe,
 - then decelerating until recently, and
 - accelerating again at present.

Pitfall

- Many people confuse the "expansion redshift" with the "Doppler redshift". They are different!
 - Confusion may arise from the use of the term, "recession velocity".
 - However, galaxies are not moving in comoving coordinates! Space between galaxies is expanding.
 - On the other hand, peculiar velocity causes the Doppler redshift.
 - Keep in mind the difference.
 - Observed velocity of a galaxy
 - = recession velocity : due to expansion of space
 - + peculiar velocity : due to galaxy's motion

...light-years away

- Newspapers often say that "astronomers have discovered the most distant galaxy at 12 billion light years away". What do they really mean?
 - As we have already learned, what astronomers measure is redshift. One has to use the measured redshift for calculating "how many years ago it was when light was emitted".

 Redshift 	How ma	How many billion years ago	
• 0.01	0.14		
• 0.1	1.3		
• 0.5	5.0		
• 1	7.7 10.2 11.4		
• 2			
• 3			
• 4	12.0	To do this conversion, we have to know how R has changed with time.	
• 5	12.3		
• 10	13.0		
• 100	13.4		