Special Relativity (1905)

- Two Invariants
 - Speed of light, c
 - Spacetime distance $(ds^2=c^2dt^2-dx^2)$
- Unification of space and time
 - No absolute space or time exists: Relativity
- Special relativity does not include gravity
 - Spacetime is not yet Riemannian, but Minkowskian

Albert Einstein (1879-1955)

• When A sees B moving, B's time interval appears to be longer (clock ticks more slowly; *time dilation*) ed and B's length appears to be shorter (*length contraction*). And vice versa.

- A's space coordinate, *x*, does not coincide with B's, *x*'. Rather, *x* is a combination of *x*' and *ct*'.
- The same is true for time coordinate.
 - This means that simultaneous events in A's coordinate would not appear simultaneous in B's coordinate!
- But, spacetime distance remains unchanged.

Outside the train, the ball appears to be going faster. It has the same up-and-down speed, plus the forward speed of the train.

The faster the train is moving, the faster the ball appears to be going to the outside observer.

Intuitive way to understand it

- From your point of view, the ball appears to move faster; however, light cannot travel faster!
- Therefore, it must take light **more time** to come back down to the laser
 - Time Dilation

Formulae

- γ is always greater than 1. $\gamma = \frac{1}{\sqrt{1 - \frac{v^2}{2}}}$
 - •As v approaches c, γ becomes large.
 - •When v=c, γ is infinite.
 - B's unit time in A's frame equals A's unit time in A's frame **multiplied** by γ . (Hence *time dilation*)
 - Be careful! The time actually elapsed in B's frame gets shorter because the unit time gets longer.
 - B's unit length in A's frame equals B's unit length in B's frame divided by γ . (Hence *length contraction*)

Mass Increase

- A pushes B (whose mass at rest is *m*) by applying a force F.
 - Acceleration is given by a=F/m.
 - Velocity acquired would be v=a dt=Fdt/m
- When B is moving, the clock ticks more slowly
 - B feels the force for a shorter time

 $- v' = a dt' = F dt' / m = F dt / (m \gamma)$

- Thus, the mass of B appears to be bigger by $\gamma!$
- Nothing can be accelerated to the speed of light, because the mass becomes infinite.