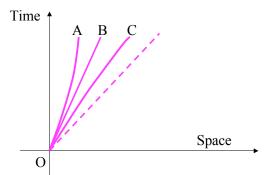

Spacetime Distances

(Spacetime distance)²


= c^2 (time interval)² – (space interval)²

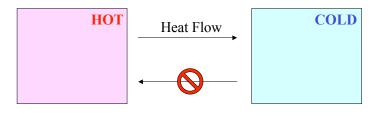
OA 1. "Timelike" worldline : (Spacetime distance) $^2 > 0$

OC 2. "Null" worldline : (Spacetime distance) $^2 = 0$

OB 3. "Spacelike" worldline : (Spacetime distance) $^2 < 0$

Acceleration and Deceleration

• OA: Decelerated


• OB: Constant velocity

• OC : Accelerated

Arrow of Time

- Symmetry is broken!
 - Space: Reversible
 - Time: Irreversible
- Why should **time** be so special in four dimension?
 - Relativistic theory (which unifies space and time and treats "spacetime" as the fundamental object) does not tell us that time must be special.
 - In fact, almost all fundamental theories of physics posses time reversibility.
 - Only "empirical" theories (such as thermodynamics) posses time irreversibility.
 - \bullet E.g., 2^{nd} law of thermodynamics entropy always either increases or stays constant.

The 2nd Law of Thermodynamics

- The 2nd law of thermodynamics states:
 - Heat always flows from hot to cold, when no extra work is done to the system.
 - How do know it? We know it from experiences.
- This law results in the increase of **entropy**, which is given by **the amount of heat per unit temperature**.