The Origin of Stars

Current Star Formation

Molecular Clouds

Composition

- H₂ (93%), He (6%)
- Dust and other molecules (~1%)
 - CO next most common after H₂, He
- > Temperature about 10 K
- Density (particles per cubic cm)
 - ~100 cm⁻³ to 10⁶ cm⁻³
 - Air has about 10¹⁹ cm⁻³
 - Water about 3 x 10²² cm⁻³
- Size 1-300 ly
- > Mass 1 to 10⁶ M_{sun}

A Small Molecular Cloud

Ices on Dust Grains

Current Star Formation

> Occurs in gas with heavy elements Molecules and dust keep gas cool Radiate energy released by collapse Stars of lower mass can form Mass needed for collapse increases with T Star formation is ongoing in our Galaxy Massive stars are short-lived Star formation observed in infrared

Space Infrared Telescope Facility

Spitzer Space Telescope Launched Aug. 2003, expect a 5 yr life.

Visible to Infrared Views

A Dark Molecular Cloud

L1014 distance ~ 600 ly, but somewhat uncertain.

Red light image;dust blocks stars behind and our view of what goes on inside.

Forming Star Seen in Infrared

Three Color Composite: Blue = 3.6 microns Green = 8.0 microns Red = 24 microns

R-band image from DSS at Lower left.

We see many stars through the cloud not seen in R. The central source is NOT a background star.

L1014 is forming a star

C. Young et al. ApJS, 154, 396

Artist's Conception

Features: Dusty envelope Rotation Disk Bipolar outflow

R. Hurt, SSC

The Protostar

Evolution of the collapsing gas cloud

- At first, collapsing gas stays cool
- Dust, gas emit photons, remove energy
- At n ~ 10¹¹ cm⁻³, photons trapped
- Gas heats up, dust destroyed, pressure rises
- Core stops collapsing
- The outer parts still falling in, adding mass
- Core shrinks slowly, heats up
- Fusion begins at T ~ 10⁷ K
- Protostar becomes a main-sequence star

The Disk

The Star (AU Mic) is blocked in a coronograph. Allows you to see disk. Dust in disk is heated by star and emits in infrared.

Angular Momentum

Measure of tendency to rotate
 J = mvr
 Angular momentum is conserved

- J = constant
- As gas contracts (r smaller), v increases
- Faster rotation resists collapse
- Gas settles into rotating disk
- Protostar adds mass through the disk

The Wind

Accretion from disk will spin up the star Star would break apart if spins too fast Angular momentum must be carried off The star-disk interaction creates a wind > The wind carries mass to large distances • J = mvr, small amount of m at very large r Allows star to avoid rotating too fast > Wind turns into bipolar jet Sweeps out cavity

The Bipolar Jet

Embedded Outflow in HH 46/47

Spitzer Space Telescope • IRAC Insect Visible Topic (058) Insec2003-061

NASA / JPL-Caltech / A. Noriega-Crespo (SSC/Caltech)

Studying the Disk

Pomoppidan et al. 2004/0, ApJ, accepted

Ices in a Protoplanetary Disc

Spitzer Space Telescope • IRS ESO • VLT-ISAAC ssc2004-20c

NASA / JPL-Caltech / K. Pontoppidan (Leiden Observatory)

Planet Formation

SMM image of Vega shows dust peaks off center from star (*). Fits a model with a Neptune like planet clearing a gap. Can test by looking for motion of clumps in debris disk.

SMM image of Vega JACH, Holland et al.

Model by Wyatt (2003), ApJ, 598, 1321

Disks versus Age of Star Evidence for Collisions

Binary Stars

> About 2/3 of all stars are in binaries
Most common separation is 10-100 AU
> Can binary stars have disks?
Yes, but binary tends to clear a gap
Disks well inside binary orbit
Or well outside binary orbit

Brown Dwarfs

Stars range from 0.07 to ~100 M_{sun}
 Jupiter is about 0.001 M_{sun}
 Brown dwarfs between stars and planets

- Dividing line is somewhat arbitrary
- Usual choice is 13 M_{jupiter}
- Brown dwarfs rarely seen as companions to stars
- But "free-floaters" as common as stars
- Many young BDs have disks
 - Planets around BDs?