The Origin of Stars

Current Star Formation

Molecular Clouds

- Composition
- H_{2} (93\%), He (6\%)
- Dust and other molecules ($\sim 1 \%$)

CO next most common affier H_{2}, He
> Temperature about 10 K
> Density (particles per cubic cm)

- ~100 cm^{-3} to $10^{6} \mathrm{~cm}^{-3}$
- Air has about $10^{19} \mathrm{~cm}^{-3}$
- Water about $3 \times 10^{22} \mathrm{~cm}^{-3}$
> Size 1-300 ly
> Mass 1 to $10^{6} \mathrm{M}_{\text {sun }}$

A Small Molecular Cloud

Ices on Dust Grains

Current Star Formation

$>$ Occurs in gas with heavy elements

- Molecules and dust keep gas cool
- Radiate energy released by collapse
- Stars of lower mass can form
- Mass needed for collapse increases with T
$>$ Star formation is ongoing in our Galaxy
- Massive stars are short-lived
- Star formation observed in infrared

』PLThe Launch of The Spitzer Space Telescope S\|RTF

Spitzer Space Telescope Launched Aug. 2003, expect a 5 yr life.

Visible to Infrared Views

A Dark Molecular Cloud

L1014 distance $\sim 600 \mathrm{ly}$, but somewhat uncertain.

Red light image;dust blocks stars behind and our view of what goes on inside.

Forming Star Seen in Infrared

Three Color Composite: Blue $=3.6$ microns
Green $=8.0$ microns
Red $=24$ microns
R-band image from DSS at Lower left.

We see many stars through the cloud not seen in R. The central source is NOT a background star.

L1014 is forming a star
C. Young et al. ApJS, 154, 396

Artist's Conception

Features:
Dusty envelope
Rotation
Disk
Bipolar outflow
R. Hurt, SSC

The Protostar

> Evolution of the collapsing gas cloud

- At first, collapsing gas stays cool
- Dust, gas emit photons, remove energy
- At $n \sim 10^{11} \mathrm{~cm}^{-3}$, photons trapped
- Gas heats up, dust destroyed, pressure rises
- Core stops collapsing
- The outer parts still falling in, adding mass
- Core shrinks slowly, heats up
- Fusion begins at T $\sim 10^{7} \mathrm{~K}$
- Protostar becomes a main-sequence star

The Disk

> The Star (AU Mic) is blocked in a coronograph. Allows you to see disk. Dust in disk is heated by star and emits in infrared.

Angular Momentum

$>$ Measure of tendency to rotate

- J = mvr
$>$ Angular momentum is conserved
- J = constant
- As gas contracts (r smaller), v increases
- Faster rotation resists collapse
- Gas settles into rotating disk
- Protostar adds mass through the disk

The Wind

- Accretion from disk will spin up the star
- Star would break apart if spins too fast
> Angular momentum must be carried off
> The star-disk interaction creates a wind
> The wind carries mass to large distances
- $J=m v r$, small amount of m at very large r
- Allows star to avoid rotating too fast
> Wind turns into bipolar jet
- Sweeps out cavity

The Bipolar Jet

Embedded Qutfiow in HH 46/47

Spitzer Space Telescope - IRAC
 vecepalet:

Studying the Disk

Robert Hurt, SSC

Ices in a Protoplanetary Disc
Spitzer Space Telescope • IRS
ESD • VLT-ISAAC
ssc2004-20c

Planet Formation

SMM image of Vega shows dust peaks off center from star (*). Fits a model with a Neptune like planet clearing a gap. Can test by looking for motion of clumps in debris disk.

SMM image of Vega
JACH, Holland et al.
Model by Wyatt (2003), ApJ, 598, 1321

Disks versus Age of Star Evidence for Collisions

Binary Stars

$>$ About $2 / 3$ of all stars are in binaries

- Most common separation is 10-100 AU
$>$ Can binary stars have disks?
- Yes, but binary tends to clear a gap
- Disks well inside binary orbit
- Or well outside binary orbit

Brown Dwarfs

- Stars range from 0.07 to $\sim 100 \mathrm{M}_{\text {sun }}$
> Jupiter is about $0.001 \mathrm{M}_{\text {sun }}$
> Brown dwarfs between stars and planets
- Dividing line is somewhat arbitrary
- Usual choice is $13 \mathrm{M}_{\text {jupiter }}$
- Brown dwarfs rarely seen as companions to stars
- But "free-floaters" as common as stars
- Many young BDs have disks

Planets around BDs?

