Evaluating your Drake Equation

Basic Ideas

- · Number of Civilizations in our Galaxy
 - Product of rate of emergence and L
 - · Running product gives rate for each step
 - Until L, we have rates
 - Through f_c, we get "communicable" civilizations
 - Multiplying by L gives the number (N)
 - Assumes "steady state" between birth and death of civilizations

Drake Equation:

$$N = R * f_p n_e f_\ell f_i f_c L$$

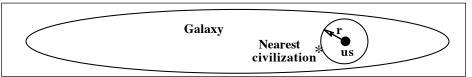
N = number of communicable civilizations in our galaxy

R = Rate at which stars form

f_p = Fraction of stars which have planetary systems

n_e = Number of planets, per planetary system, which are suitable for life

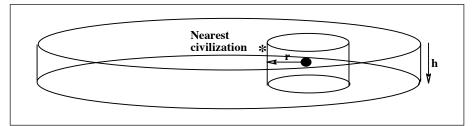
 ϵ_{ℓ} = Fraction of life bearing planets where intelligence develops


f_c = Fraction of planets with intelligent life which develop a technological phase during which there is a capacity for and interest in interstellar communication

L = Average of lifetime of communicable civilizations

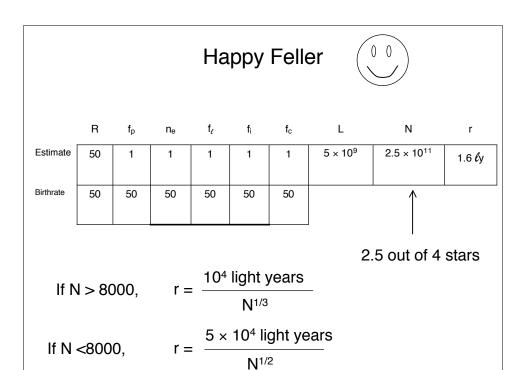
r = Average distance to nearest civilization

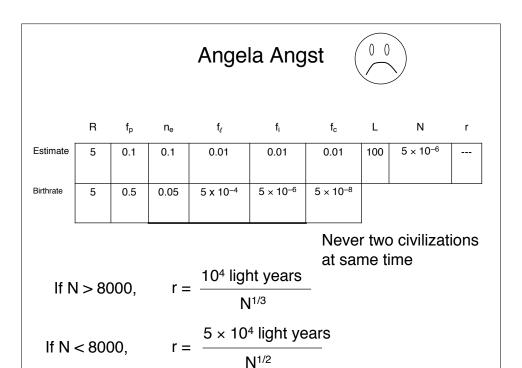
Distance to Nearest Neighbor

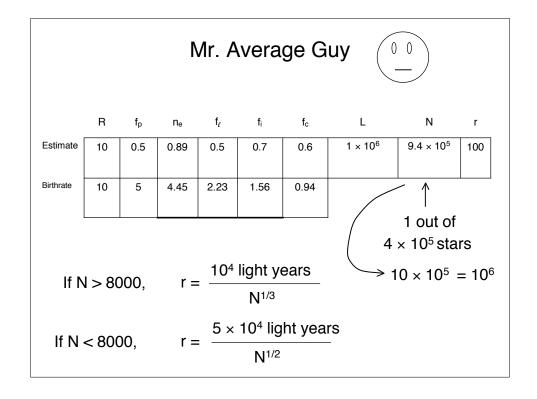

 Assume civilizations spread uniformly but randomly through galaxy

r = radius of imaginary sphere centered on us that touches nearest civilizaztion search vol $\propto r^3$

$$\Rightarrow r = \frac{10^4 \, \ell y}{N^{1/3}}$$


Distance to Nearest Neighbor

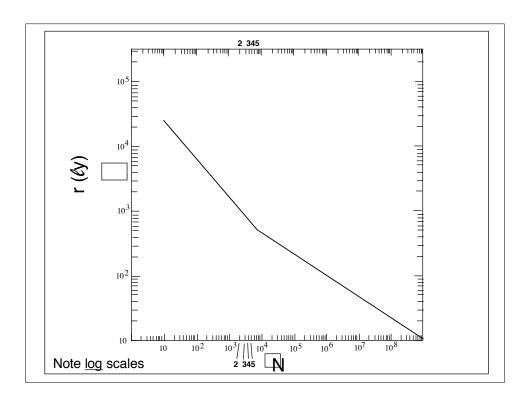



If N < 8000, $\,$ r from previous formula is 500 ℓy About equal to thickness of Galaxy

Use cylinder for search vol $\propto r^2 h$

so
$$r = \frac{5 \times 10^4 \, \ell y}{N^{1/2}}$$

Evaluating YOUR Drake Equation


- · Almost no answers are wrong
 - It must be possible for us to exist
 - N must be no greater than the number of stars in the Galaxy
 - · May imply limit on L
- · Ways to evaluate:
 - Plug into equations
 - Use calculator on web
 - Ask us for help

If N < 8000,

Your Drake Equation									
	R	f_p	n _e	f_ℓ	f _i	f _c	L	N	r
Estimate									
Birthrate									
If N									

 $r = \frac{5 \times 10^4 \text{ light years}}{}$

N^{1/2}

Points to bear in mind

- r is based on assuming spread uniformly
 - Could be less in closer to center of MW
- r is based on averages
 - Could be closer but unlikely
- · r is less uncertain than N
- Since signals travel at c, time = distance in ly
- If L < 2r, no two way messages