Evaluating your Drake Equation

Basic Ideas

- Number of Civilizations in our Galaxy
- Product of rate of emergence and L
- Running product gives rate for each step
- Until L, we have rates
- Through f_{c}, we get "communicable" civilizations
- Multiplying by L gives the number (N)
- Assumes "steady state" between birth and death of civilizations

Drake Equation:

$$
N=R_{*} f_{p} n_{e} f_{c} f_{i} f_{c} L
$$

$\mathrm{N}=$ number of communicable civilizations in our galaxy
$\mathrm{R}_{*} \quad=\quad$ Rate at which stars form
$\mathrm{f}_{\mathrm{p}} \quad=\quad$ Fraction of stars which have planetary systems
$\mathrm{n}_{\mathrm{e}} \quad=\quad$ Number of planets, per planetary system, which are suitable for life
$\mathrm{f}_{l} \quad=\quad$ Fraction of life bearing planets where intelligence develops
$\mathrm{f}_{\mathrm{c}} \quad=\quad$ Fraction of planets with intelligent life which develop a technological phase during which there is a capacity for and interest in interstellar communication

L = Average of lifetime of communicable civilizations
$r \quad=\quad$ Average distance to nearest civilization

Distance to Nearest Neighbor

1. Assume civilizations spread uniformly but randomly through galaxy

Galaxy
Nearest civilization
$r=$ radius of imaginary sphere centered on us that touches nearest civilizaztion search vol $\propto r^{3}$

$$
\Rightarrow r=\frac{10^{4} \varphi y}{N^{1 / 3}}
$$

Distance to Nearest Neighbor

If $N<8000, \quad r$ from previous formula is 500 ay
About equal to thickness of Galaxy
Use cylinder for search vol $\propto r^{2} h$ so

$$
r=\frac{5 \times 10^{4} \mathrm{Cy}}{\mathrm{~N}^{1 / 2}}
$$

Happy Feller

	R	f_{p}	n_{e}	f_{l}	f_{i}	f_{c}	L	N	r
Estimate	50	1	1	1	1	1	5×10^{9}	2.5×10^{11}	1.6 ly
Birthrate	50	50	50	50	50	50		\uparrow	

2.5 out of 4 stars

If $N>8000, \quad r=\frac{10^{4} \text { light years }}{N^{1 / 3}}$

If $\mathrm{N}<8000$,

$$
r=\frac{5 \times 10^{4} \text { light years }}{N^{1 / 2}}
$$

Angela Angst

	R	f_{p}	n_{e}	$\mathrm{f}_{\text {c }}$	f_{i}	f_{c}	L	N	
Estimate	5	0.1	0.1	0.01	0.01	0.01	100	5×10^{-6}	---
Birthrate	5	0.5	0.05	5×10^{-4}	5×10^{-6}	5×10^{-8}			

Never two civilizations at same time
If $N>8000, \quad r=\frac{10^{4} \text { light years }}{N^{1 / 3}}$

If $\mathrm{N}<8000$,

$$
r=\frac{5 \times 10^{4} \text { light years }}{N^{1 / 2}}
$$

Mr. Average Guy

Evaluating YOUR Drake Equation

- Almost no answers are wrong
- It must be possible for us to exist
- N must be no greater than the number of stars in the Galaxy
- May imply limit on L
- Ways to evaluate:
- Plug into equations
- Use calculator on web
- Ask us for help

Your Drake Equation

$$
\begin{aligned}
& \text { If } N>8000, \quad r=\frac{10^{4} \text { light years }}{N^{1 / 3}} \\
& \text { If } N<8000, \quad r=\frac{5 \times 10^{4} \text { light years }}{N^{1 / 2}}
\end{aligned}
$$

Points to bear in mind

- r is based on assuming spread uniformly
- Could be less in closer to center of MW
- r is based on averages
- Could be closer but unlikely
- r is less uncertain than N
- Since signals travel at c, time = distance in ly
- If $L<2 r$, no two way messages

