Evaluating your Drake Equation

Basic Ideas

- Number of Civilizations in our Galaxy
 Product of rate of emergence and L
 - Running product gives rate for each step
 - Until L, we have rates
 - Through f_c, we get "communicable" civilizations
 - Multiplying by L gives the number (N)
 - Assumes "steady state" between birth and death of civilizations

Drake Equation:

$N = R \star f_p n_e f_\ell f_i f_c L$

- = number of communicable civilizations in our galaxy
- = Rate at which stars form

Ν

R

fp

ne

 f_{ℓ}

 f_c

r

*

- = Fraction of stars which have planetary systems
- Number of planets, per planetary system,
 which are suitable for life
- = Fraction of life bearing planets where intelligence develops
 - Fraction of planets with intelligent life which develop a technological phase during which there is a capacity for and interest in interstellar communication
- L = Average of lifetime of communicable civilizations
 - = Average distance to nearest civilization

Distance to Nearest Neighbor1. Assume civilizations spread uniformly but randomly through galaxy

r = radius of imaginary sphere centered on us that touches nearest civilization search vol ∝ r³ ⇒ r = $\frac{10^4 \ell y}{N^{1/3}}$

Distance to Nearest Neighbor

If N < 8000, r from previous formula is 500 *b*/ About equal to thickness of Galaxy

Use cylinder for search vol $\propto r^2 h$ so $r = \frac{5 \times 10^4 \ell y}{N^{1/2}}$

Happy Feller

	R	f _p	n _e	f_ℓ	fi	f _c	L	Ν	r
Estimate	50	1	1	1	1	1	5 × 10 ⁹	2.5 × 10 ¹¹	1.6 <i>l</i> y
Birthrate	50	50	50	50	50	50			

2.5 out of 4 stars

Angela Angst

	R	f p	n _e	f_ℓ	f _i	f _c	L	Ν	r
Estimate	5	0.1	0.1	0.01	0.01	0.01	100	5 × 10 ⁻⁶	
Birthrate	5	0.5	0.05	5 x 10 ⁻⁴	5 × 10 ⁻⁶	5 × 10 ^{–8}			

Never two civilizations at same time

If N > 8000, $r = \frac{10^4 \text{ light years}}{N^{1/3}}$ If N < 8000, $r = \frac{5 \times 10^4 \text{ light years}}{N^{1/2}}$

Mr. Average Guy

	R	f _p	n _e	f_{ℓ}	fi	f _c	L	Ν	r
Estimate	10	0.5	0.89	0.5	0.7	0.6	1 × 10 ⁶	9.4 × 10 ⁵	100
Birthrate	10	5	4.45	2.23	1.56	0.94			
			4	$ \begin{array}{c} 1 \text{ out of} \\ 4 \times 10^5 \text{ stars} \end{array} $					
lf N	l > 80)00,	r =	= <u>10</u> ⁴	light ye N ^{1/3}	> 1	0 × 10 ⁵ =	= 10 ⁶	
If N < 8000,			r =		10 ⁴ lig N ^{1/2}	ht year	S		

Evaluating YOUR Drake Equation

- Almost no answers are wrong
 - It must be possible for us to exist
 - N must be no greater than the number of stars in the Galaxy
 - May imply limit on L
- Ways to evaluate:
 - Plug into equations
 - Use calculator on web
 - Ask us for help

Your Drake Equation

Points to bear in mind

- r is based on assuming spread uniformly
 Could be less in closer to center of MW
- r is based on averages
 - Could be closer but unlikely
- r is less uncertain than N
- Since signals travel at c, time = distance in ly
- If L < 2r, no two way messages