Average Lifetime of Technological Civilization

Average Lifetime of
 Technological Civilization

$\mathrm{L}=$?

- End of Communication Efforts
(Civilization Survives) (Decades?)
- Civilization Evolves away from interest or capability (Post-technological Civilization) (Centuries - Millenia)
- Civilization Collapses
(Reversion to Pre-technological Culture)
Exhaustion of resources
Population explosion
(~ 100 yrs - 1000 yrs)
- Sudden, Catastrophic End of Civilization or

Extinction of our Species
Nuclear War leads to Nuclear Winter
(10's - 100's of years)
Natural Catastrophes (>105 yr for most)

Resource Depletion

Metals, Drinkable Water, Arable Land, ...

Energy is most fundamental

Energy is conserved
"Depletion" = conversion to less usable forms (entropy increases)

Resource Depletion

Fossil Fuels (Stored Solar Energy)
will eventually run out
~ 500 years for coal $200 ?$

Nuclear Power? Stopgap...

Ultimately Solar Power

Little Attempt to Plan Ahead

World Energy Usage

World 380 "Quads"
Per year Quad $=10^{15} \mathrm{BTU} \simeq 3 \times 10^{11} \mathrm{kw}-\mathrm{H}$
$\longrightarrow 13 \times 10^{6}$ MW Avg. power
U.S. uses 26% of this

Energy per capita ~ 6 metric tonnes of oil equivalent $\sim 2 \times$ Europe
$\sim 5 \times$ World avg.

Consumption by Source

Regional Primary Energy Consumption Pattern

Regional primary energy consumption pattern 2003
Percentage

[^0]Oil remains the largest single source of energy in most parts of the world. The exceptions are the Former Soviet Union, where gas dominates and Asia Pacific where coal is the dominant fuel.

Energy Consumption per capita

Side Effects

- General Pollution of Air, Water, Land

Makes resources less usable
Unbreathable Air
Undrinkable water
Desertification of farm-lands

- Ozone Layer Destruction
\Rightarrow UV reaches surface
Skin Cancer, Cataracts, ...
Crop Damage

Caused by CFC's (refrigeration, styrofoam,...) other chemicals

Stratosphere is very sensitive and poorly understood

Catalytic reactions: One CFC molecule leads to the destruction of many ozone molecules
$\mathrm{O}_{3} \longrightarrow \mathrm{O}_{2}$

Side Effects (cont.)

- Fossil fuels $\rightarrow \mathrm{CO}_{2} \rightarrow$ Greenhouse (any chemical fuel)

Global warming

Crop yields?
Runaway greenhouse?

(Earth become like Venus?)
Not likely to go this far

Update on CO_{2} leading to Global Warming

- New models include Sulfate emission leads to haze which leads to increase in albedo
- Cooling tends to balance warming from Greenhouse CO_{2} Less temperature rise in short term

Ice core analysis shows strong correlation of temperature and astronomical cycles rotation axis, orbital variations, solar cycle

Also - we are still in last stages of "little ice age" In climate behavior, but not temperature

Greenland ice cores Nature, 15 July 1993
Study temperature, climate... over 150,000 yr
Last interglacial (Eemian)
115,000-130,000 yr ago
warmer
3 temp. states: like present colder
Very rapid switches (up to $10^{\circ} \mathrm{C}$)
Our current stable climate may not be typical of interglacials

FIG. 4 Profles of five parameters đrrough 'event 1', a rapid climatic oscillation (~ 70 yr duration) at the culminstion of the Eemian interglacial, $\sim 115 \mathrm{kyr}$ Bp. a, Deuterium excess ${ }^{15}$; b, oxygen isotope ratio ${ }^{\circ}$; c, same as b, but deconvoluted to account fer diffusion (estimated diffusion lengith 3 cm); d, acidity measured by ECM in microequivalents per litre ${ }^{31}$; e, dust concentration measured from scattered laser light and calibrated by Coulter Counter by integrating size distribution ${ }^{33}$; f, calcium ion concentration ${ }^{38}$.

Population Explosion

(The revenge of Malthus?)

Agriculture - Population Growth - Disease
Population Growth leads to more rapid depletion of resources
More pollution
More conflict?

Two "events" (transitions)
10,000 yrs ago
Agriculture
250 yrs ago
Disease lessened
(demographic transition)

Time	Total Pop.	Growth Rate (per thousand per year)
Before Agriculture	$\sim 8 \times 10^{6}(? ?)$	0.015
~ 8000 B.C. - 1 A.D.	$\sim 3 \times 10^{8}$	0.36
1 AD-1750 A.D.	$\sim 8 \times 10^{8}$	0.56
1750-1800	$\sim 1 \times 10^{9}$	4.4
1950	4×10^{9}	17.1
2000	6×10^{9}	~ 18
Population Doubling in 55 years		

Population Mathematics

Rate of increase \propto Number \times (Birth - Death $)$
leads to exponential growth if (Birth - Death) constant
Pop (t) $=\operatorname{Pop}(N o w) 2^{\left(t / t_{d}\right)}$
$\mathrm{t}_{\mathrm{d}}=$ doubling time $\simeq 55$ years
So doubles in 55 yrs
Quadruples (2^{2}) in $110 \mathrm{yrs}, \ldots$
$990 \mathrm{yr} \quad\left(18 \mathrm{t}_{\mathrm{d}}\right) \quad \mathrm{Pop}=1.3 \times 10^{15}$
\sim fills land area
$2530 \mathrm{yr} \quad\left(46 \mathrm{t}_{\mathrm{d}}\right) \quad$ Mass $>\mathrm{M}_{\text {(earth) }}$!
$12,375 \mathrm{yr} \quad\left(225 \mathrm{t}_{\mathrm{d}}\right) \quad$ Mass expands at c !!
Current population growth is NOT sustainable

World Vital Events Per Time Unit: 2005

(Figures may not add to totals due to rounding)

Time unit	Births		
Natural Deaths	increase		

Source: U.S. Census Bureau, International Data Base 5-10.00.

Source: U.S. Census Bureau, International Data Base 5-10-00.

FIGURE 3: PERCENTAGE OF POPULATION UNDERNOURISHED, BY SUBREGION, 1996-1998

Does negative effect on population growth
Beat positive effect on resource depletion?
Can we get to sustainable economy before We exhaust resources?

Nuclear War

Total arsenal world-wide $\sim 10,000$ megatons

Global effects of all-out war

- Depletion of ozone
- Radioactive fallout
- Dust and smoke in atmosphere would block sunlight and lead to cooling of the Earth "Nuclear Winter"

Natural Catastrophes

Collisions
Stars? Negligible
Molecular Clouds? t $\sim 10^{8} \mathrm{yr}$
Likely, but the effects are unclear
Asteroids and other debris (comets, meteoroids, ...)

Effect of Asteroid Impact:

e.g. $1 / 4 \mathrm{~km}$ radius
$\mathrm{V}=30 \mathrm{~km} \mathrm{~s}^{-1} \quad$ (65,000 miles/hour)

$$
\begin{aligned}
\mathrm{E}_{\mathrm{k}}=1 / 2 \mathrm{Mv}^{2} & \simeq 7200 \text { megatons of TNT } \\
& \simeq \text { all-out nuclear war }
\end{aligned}
$$

Crater ~ 10 km across, few km deep
10^{12} tons of debris released into atmosphere
If covers globe, leads to temperature drop and "asteroid winter"

How Often do Large Asteroids Strike the Earth?
1937 Hermes ~500,000 miles
1989FC Similar
1991BA $\quad 170,000 \mathrm{~km}$ (5-10 m diameter)

How often might we expect global catastrophe?
"Substantial" Impacts
(1 km or larger) $\quad \mathrm{t} \sim 10^{5} \mathrm{yr}-10^{6} \mathrm{yr}$
Major Extinctions $t \sim 30 \times 10^{6} \mathrm{yr}$
Mass Extinctions $t \sim 100 \times 10^{6} \mathrm{yr}$?

More massive asteroids more destructive, but also more rare, so collisions are less likely

Preventable by advanced civilization?

1991 BA ~ 40 kilotons TNT ($3 \times$ Hiroshima) 50 meter objects - once per century

April 1992 - proposal for project to search and identify - space watch underway

Stellar Evolution

4-5 billion yrs - Sun will become a Red Giant Before that, gradual increase in $L_{\text {sun }}$ and possible cyclic variations

Repeated ice ages $\sim 10^{5} \mathrm{yrs}-10^{6} \mathrm{yrs}$ changes in $L_{\text {sun }}$ or Earth orbit may be responsible

Gradual increase could lead to evaporation of oceans

$$
\begin{array}{ll}
\mathrm{UV}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{H}+\mathrm{O} & \mathrm{H} \longrightarrow \\
\text { Loss of water in } \sim 1-2 \times 10^{9} \mathrm{yr}
\end{array}
$$

Could advanced civilization delay this?
(Decrease greenhouse, add dust)

Move to Mars?

Nearby star \longrightarrow supernovae within 30 ly , could destroy ozone
Expect $\sim 2 \times 10^{9} \mathrm{yr}$

Other stars

$\sim 2 \times 10^{9} \mathrm{yr}$
Nearby star leads to Supernova
within 30 ey ozone is destroyed

If open, expands forever

$10^{12}-10^{14} \quad$ all stars die
$10^{17} \quad$ planetary systems disrupted
$10^{18}-10^{20}$ galaxies "evaporate"
$10^{32}-10^{34}$ protons decay?
$10^{100} \quad$ Black holes evaporate

- For number of civilizations now, $\mathrm{L} \leq 5 \times 10^{9} \mathrm{yrs}-$
[age of galaxy - time to evolve]

Darkness

I had a dream, which was not all a dream.
The bright sun was extinguish'd, and the stars
Did wander darkling in the eternal space, Rayless, and pathless, and the icy earth Swung blind and blackening in the moonless air;

- Lord Byron, 1816

[^0]: - Oil - Natural gas |n Nuclear energy = Hydroelectricity in Coal

