Origin of Life: I Monomers to Polymers

Synthesis of Monomers

Life arose early on Earth (within 0.7×10^9 y)

1. Conditions

- 1. Liquid Water
- 2. Reducing or Neutral Atmosphere
- 3. Energy Sources

2. Originally thought atmosphere was NH₃, CH₄, H₂O, H₂

Miller - Urey Experiment

Now Believe CO_2 , H_2O , N_2

3. Energy Sources

Ultraviolet Light (No Ozone) Lightning Geothermal (Lava, Hot Springs, Vents, ...)

Miller - Urey Experiment

<u>COMPOUND</u>	Relative Yield
Glycine	270
Sarcosine	21
Alanine	145
N-methylalanine	4
Beta-alanine	64
Alpha-amino-n-butyric acid	21
Alpha-aminoisobutyric acid	0.4
Aspartic acid	2
Glutamic acid	2
Iminodiacetic acid	66
Iminoacetic0propionic acid	6
Lactic acid	133
Formic acid	1000
Acetic acid	64
Propionic acid	56
Alpha-hydroxybutyric acid	21
Succinic acid	17
Urea	8
N-methyl urea	6

How did Amino Acids form in Miller -Urey Experiment? Strecker Synthesis

 $\begin{array}{c} CH_{4}, H_{2}, NH_{3} + Energy \longrightarrow H_{2}CO, HCN, HC_{3}N, \\ e.g. Glycine Synthesis & Urea (H_{2} NCONH_{2}) \\ \hline \\ Reactive \\ H \\ H_{2}CO + NH_{3} + HCN \longrightarrow \begin{array}{c} H \\ H \\ H \\ H \end{array} N - \begin{array}{c} C \\ C \\ C \\ H \\ H \end{array} + \begin{array}{c} H \\ C \\ H \\ H \end{array} + \begin{array}{c} H \\ C \\ H \\ H \\ H \end{array}$

Aminoacetonitrile

Lower yield if atmosphere was N₂, CO₂, H₂O (If H₂/CO₂ > 2, get good yield)

Problems with Miller - Urey

- Atmosphere was N_2 , CO_2 , H_2O
- NH_3 , CH_4 would react \longrightarrow N_2 , CO_2
- Try N_2 , CO_2 , H_2O in Miller Urey simulation

Only get trace amounts of glycine Need CH₄ to get more complex amino acids

Need $H_2/CO_2 > 2$ to get much of any amino acid

Miller - Urey with Cosmic Rays

A group in Japan has obtained good yields of amino acids from slightly reducing gases (CO₂, CO, N₂, H₂O)

When they used high energy protons (simulate cosmic rays)

Apparently not Strecker Synthesis (Low abundance of aminoacetonitrile)

3. Phosphate Rock Erosion

Less understood than amino acids

Other Possibilities: Seafloor Vents Interstellar Molecules Comets

Alternative Delivery

Molecular clouds - strongly reducing, contain many molecules used in Miller-Urey (H_2 , NH_3 , H_2O , CH_4) and intermediates (HCN, H_2CO , HC_3N) and possibly glycine

Problem: These would not have survived in part of disk where Earth formed

But interstellar ices \longrightarrow comets Evidence from similar molecules (e.g. C_2H_2 , CH_4 , <u>HNC</u>, ...) Clearly indicates interstellar chemistry Cratering record on moon, \dots \Rightarrow heavy bombardment early in history

Comets and their debris could have brought large amounts of "organic" matter to Earth (and maybe oceans)

Some evidence for non-biological amino acids in layer depostied after asteroid impact 65 million years ago

Sources of Organic Molecules

Quantitative comparison by Chyba & Sagan, Nature 1992, Vol. 355, p. 125

Currently, Earth accretes ~ 3.2 × 10⁶ kg y⁻¹ from interplanetary dust particles (IDP)
~ 10 % organic carbon ⇒ 3.2 × 10⁵ kg y⁻¹
~ 10³ kg y⁻¹ comets

~ 10 kg y⁻¹ meteorites

~ $10^3 \times \text{more at } 4.5 \times 10^9 \text{ yr ago}$ (?) (cratering record) UV + reducing atmosphere 2 × $10^{11} \text{ kg y}^{-1}$ But if H₂/CO ≤ 0.1 IDP's dominant source So if atmosphere very neutral, IDP's

Most of mass in IDP's in range of size $\sim 100~\mu m$ mass $\sim 10^{-5}~g$

Complex structure - composites of smaller grains some carbon rich

Enhanced deuterium —> low T

Also found in interstellar molecules $? \Rightarrow$ connection back to interstellar chemistry

2 kinds (mass ranges) can supply organic matter

1.Interplanetary dust particles $(m \leq 10^{-5} \text{ g})$

2.Smaller meteorites $(m \leq 10^8 \text{ g})$

FIG. 1 Infall rate of meteoritic matter on Earth (adapted from ref. 5). Intervals where organic matter can survive passage through atmosphere are shaded. The curve on the right is based on the relation⁵ N=0.54 $r^{-2.1}$ (N = number of impacts per Myr, r = radius in km), for an assumed density of 3 g cm⁻³. The corresponding mass accretion rate (Gg yr⁻¹) between r_1 and r_2 is 15.83 $(r_2^{0.9}-r_1^{0.9})$.

E. Anders (1989) Nature, 342, 255

Alternative Sites

Locally reducing environments

1. Ocean vents Sources of CH_4 and H_2S Current Vents have ecosystems based on energy from chemicals - not photosynthesis $H_2S \longrightarrow$ Bacteria \rightarrow Clams, Tube Worms Pre-biotic amino acid synthesis?

2. Inside Earth

Many bacteria now known to live deep (~ 2 miles) in Earth. Again, on chemicals, adapted to high temperature genetic makeup very ancient

3. Hot Springs Bacteria mag

Bacteria may be important in precipitating minerals. again adapted to high T and ancient

$\frac{\text{Synthesis of Polymers}}{M_1 + M_2 \longrightarrow P + H_2O}$ $\leftarrow \text{ more likely in liquid } H_2O$

SolutionsRemove H_2O (Drying, Heat)
Sydney Fox \longrightarrow ProteinoidsEnergy Releasing Reactions (H_2NCN or HC_3N)Catalysts: Clays

Monomers ——> polymers

A problem: Peptide bond requires removal of H₂O This would be hard in primordial sea

Need special molecules to do what Ribosome does in living cells

Input of energy or Dry environment (dry land)

Imagine drying tidepool + geothermal heat Heat + amino acids \longrightarrow peptide bonds Sidney Fox "proteinoids" or catalyst - clay, energy-rich bonds... Problem greater for nucleic acids Sugar + base + heat -----> some nucleosides

Activated nucleosides + phosphoric acid + Zn⁺²

 \rightarrow polymers up to 50 nucleotides

linkages (mostly) correct

Nucleic acids more complex

nucleoside

nucleotide

Monomers of nucleic acids

Synthesis of Adenosine

Base on 1' Carbon Why?

Also phosphates

3' & 5' carbons

Otherwise

Misalignment

Leslie Orgel has had some success in getting high percentage of correct linkages, in presence of Zinc ions.

SYNTHESIS OF DNA involves the stepwise addition of activated nucleotides to the growing polymer chain. In this illustration eoxyadenosine 5'-triphosphate (A*) is being coupled through a phosphodiester bond that links the 3' carbon in the deoxyribose portion of the last nucleotide in the growing chain to the 5' carbon in the deoxyribose portion of the newest member of the chain.

The Odds

- We need to get an "interesting" polymer
 - Enzyme
 - Self replicator
- Properties of polymer depend on
 - Order in which monomers combine
- If we combine monomers at random,
 How likely to get something interesting?

Statistics of an unlikely event

Random reactions in primordial soup? Unlikely event versus many trials Probability — Consider tossing 10 coins

Probability of all heads = product of prob. $P = \left(\frac{1}{2}\right) \left(\frac{1}{2}\right) \left(\frac{1}{2}\right) \left(\frac{1}{2}\right) \left(\frac{1}{2}\right) \left(\frac{1}{2}\right) \dots \left(\frac{1}{2}\right)^{10} = \frac{1}{1024}$

Probability of getting 10 amino acids \rightarrow protein Chosen from 20 in a particular <u>order</u>

$$\left(\frac{1}{20}\right)^{10} = \frac{1}{1 \times 10^{13}}$$

But if you try many times, the chance of success is higher $P(r) = \frac{n!}{r! (n - r)!} p^r (1 - p)^{n-r}$ r = # of successes p = prob. Of success on each trial n = # of trialsn! = n (n-1) (n-2) ... 1 e.g. make n = $\frac{1}{p}$ (flip all 10 coins 1024 times) $P(1) = \frac{n!}{1! (n-1)!} \left(\frac{1}{n}\right) \left(1 - \frac{1}{n}\right)^{n-1} = 0.37$

Chance of one or more successes = 0.63 For reasonable chance need n ~ $\frac{1}{p}$ How many do we have to get right?1. How many atoms?Lipids $10^2 - 10^3$ Enzymes, RNA $10^3 - 10^5$ Bacterial DNA $10^8 - 10^9$ Bacterium $10^{11} - 10^{12}$ Human Being $10^{27} - 10^{28}$

If we choose from H,C, N, O (ignore S,P) probability of right choice 1/4 So for enzyme: $(\frac{1}{4})^{10^3} \sim 10^{-600}$

of trials: Shapiro computes $N = 2.5 \times 10^{51}$ (surely an overestimate) $n \ll \frac{1}{p}$ for simple enzyme

What if we start with amino acids?
 Need ~ 10¹³ trials to get 10 amino acid protein

To get 200 amino acids in right order

$$\left(\frac{1}{20}\right)^{200} = 10^{-260}$$
 Hopeless!

Need something besides random combinations Selection (Natural?)

Improving the Odds

Many proteins composed of interchangeable segments (Domains)

10 -250 amino acids

One domain found in ~ 70 different proteins

Intermediate building blocks?

If so, may only need to get enough amino acids in right order for a domain e.g. 18 amino acid domain P = $\left(\frac{1}{20}\right)^{18}$ 10⁻²³

Also, many variations in amino acids don't destroy function

and many different sequences may be interesting

Scientific American Doolittle & Bork Oct. 1993, pg. 50

Proteins made of domains, assembled in various ways 10-250 amino acids for ones containing disulfide bonds

18 - 100 for those without

Of all amino acids available

$\left(\frac{1}{20}\right)^{40}$	or	$\left(\frac{1}{20}\right)^{18}$
$\log_{10} = 40 \log_{10} \log_$	g 20	-18 log 20
= - 52		= -23.4
so 10 ⁻⁵²		10 ^{-23.4}

Interesting fact on how the improbable happens 1st winner of Texas Lotto lottery Picked all 6 numbers correctly in the <u>same</u> order as they were drawn.

Each number runs from 1 to 50, and once chosen, cannot be repeated (balls are taken from a box).

So the odds against getting them in order is $\binom{1}{50}\binom{1}{49}\binom{1}{48}\binom{1}{47}\binom{1}{46}\binom{1}{45} = \frac{1}{11,441,304,000}$ You don't need to get them in the same order to win odds against winning include any combination, so 1 in 16 million