Habitable Planets

n_{e} Number of planets, per planetary system that are suitable for life

$n_{p}=n_{e}$ for stars like Sun
$\mathrm{f}_{\mathrm{s}}=$ fraction of stars with suitable properties
$n_{p}, n_{e} \quad$ could be greater than 1
$\mathrm{f}_{\mathrm{s}} \leq 1$

Key requirement Liquid for solvent
$\mathrm{H}_{2} \mathrm{O} 273-373 \mathrm{~K}$ at Earth pressure $\longrightarrow 647 \mathrm{~K}$ at higher pressures
$\longrightarrow 330 \mathrm{~K}$ protect proteins, membranes smaller range at lower pressure
CH_{4} (methane) 91-109 at Earth pressure
NH_{3} (ammonia) 195-240 K at Earth pressure

Pressure, Gravity \longrightarrow size of planet

Water Phase Diagram

What sets the temperature?

In space, absorption and emission of electromagnetic radiation (light)

> Energy in = Energy out $\left(\mathrm{L} / \mathrm{d}^{2}\right) \quad\left(\mathrm{T}^{4}\right)$

$$
\begin{array}{r}
\mathrm{L} \\
\hline \quad \mathrm{~T} \quad\left(\frac{\mathrm{~L}}{\mathrm{~d}^{2}}\right)^{1 / 4} \\
\mathrm{~d}^{-1 / 2} \\
\frac{1}{\bar{d}}
\end{array}
$$

$4 \quad$ as far from star, T is half as high

Planet Temperatures

1st approximation: A blackbody at a distance d from a star of luminosity L

Maximum temperature

$\mathrm{T}_{\text {max }}$

$$
T=394 K\left(\frac{L}{d^{2}}\right)^{1 / 4} \quad \begin{array}{ll}
\mathrm{L} & \text { in } \mathrm{L}_{\odot} \\
\text { in } \mathrm{AU}
\end{array}
$$

2nd approximation: A fraction of the light is reflected (not absorbed)
Call this fraction the albedo (A)

$$
T=394 K\left[\frac{(1-A) L}{d^{2}}\right]^{1 / 4}
$$

$\begin{array}{cc}\text { e.g. Moon } A=0.07 & T_{\text {max }}=387 \\ L=1 L 。 & \text { correct to few } \%\end{array}$
But Earth : A $=0.39 \quad \mathrm{~T}_{\max }=342 \mathrm{~K}$ predicted $\mathrm{T}_{\text {max }} \leq 313 \mathrm{~K}$

3rd approximation:
Account for rapid rotation - $\mathrm{T}_{\max }$ less
$\mathrm{T}_{\text {min }}$ more
close to $\mathrm{T}_{\text {avg }}$
$\mathrm{T}_{\text {avg }}=279 \mathrm{~K}\left[\frac{(1-\mathrm{A}) \mathrm{L}}{\mathrm{d}^{2}}\right]^{1 / 4}$
Earth: $\mathrm{A}=0.39 \quad \mathrm{~T} \quad \mathrm{~T}_{\text {avg }}=246 \mathrm{~K}$ Actual $\quad \mathrm{T}_{\text {avg }}=288 \mathrm{~K}$

4th approximation: Greenhouse effect

Consequences of Greenhouse Effect:

Raises $\mathrm{T}_{\text {avg }}$ (Earth) by about 40K

Otherwise $\quad \mathrm{T}_{\text {avg }}<\mathrm{T}_{\text {freeze }}$
— Frozen Planet

Habitable Zone (HZ)

For fixed luminosity, Greenhouse Effect
a required temperature range
translates to a required
range of distances from star

But Greenhouse Effect could have a big impact on the size of HZ

Continuously Habitable Zone (CHZ)

Need $\sim 5 \square 10^{9}$ years for intelligent life? But Sun's L increases slowly
$T_{\text {®ar }}$ constant to few degrees (mostly)
(decreasing Greenhouse)

HZ moves out as L rises

- CHZ smaller than HZ
. \quad Computer Models

Hart

$$
\begin{aligned}
& \mathrm{CHZ} \quad 0.95-1.01 \mathrm{AU} \\
& \square \quad \mathrm{n}_{\mathrm{p}} \lesssim 0.1
\end{aligned}
$$

Negative feedback \longrightarrow thermostat

Whitmire et al.
$\mathrm{CHZ} 0.95-1.5 \mathrm{AU}$
$\square \quad \mathrm{n}_{\mathrm{p}} \sim 1$

The Carbon Cycle without Life

Figure 7.3. Bchematic representation of the long-term global carton oycle showing the flows (hollow arows) of carbon that are important on timescales of more than 100 Kyr . Carbon is added to the atmosphere through metamorphic degassing and volcanic activity on land and at mid-ocean ridges. Atmospheric carton is used in the weathering of silicate minerals in a temperature-sensitive dissolution process; the products of this weathering are camied by rivers to the oceans. Carbonate sedimentation exracts carbon from the oceans and ties it up in the form of limestones. Pelagic limestones deposited in the deep ocean can be subducted and melted. Limestones deposited on continental crust are recyeled much more slowly - if they are exposed and weathered, their remains may end up as pelagic carbonates; if theyget caught up in a continental collision, they can be metamorphosed, liberating their CO_{2}.

The Carbon Cycle on Earth Now

Note Changing Scale

FIG. 1. Luminosity evolution of a $1 \mathrm{M}_{\odot}$ star of solar composition. Note that the scale is broken at 10 and 11 Gyr. The discontinuity at 11 Gyr is real and is due to the helium flash. The phases are: $M S=$ main sequence, $R G=$ red giant, $H B=$ horizontal branch, and $A G B=$ asymptotic giant branch. The final white dwarf phase is not iliustrated. Details of the evolution during the HB and AGB phases are omitted.

$$
r_{2}=\sqrt{\frac{L(t)}{S_{2}(T)}}
$$

Cold Starts?

- As Habitable Zone moves out
- Can you unfreeze a frozen planet?
- Will it become suitable for life?
- If not, HZ will shrink
- CHZ is smaller

Fig. 2. Evolution of the HZ around a $1 \mathrm{M}_{0}$ star assuming that an ice covered planet that was initially beyond the outer HZ boundary can be cold started. The three cases shown are discussed in the text and correspond to the most conservative Case 1 (long dashes), the intermediate Case 2 (solid curves), and the least conservative Case 3 (short dashes).

Fig. 3. Evolution of the HZ around a $1 \mathrm{M}_{\odot}$ star assuming that an ice covered planet that was initially beyond the outer HZ boundary cannot be cold started until the stellar flux is greater than the critical greenhouse value. The three cases shown are discussed in the text and correspond to the most conservative Case 1 (long dashes), the intermediate Case 2 (solid curves), and the least conservative Case 3 (short dashes).

Temperatures for Life on Earth

Lower limit?

Some microbes survive for long periods in Antarctic ice
e.g. Lake Vostok - 2.5 miles below glacial ice in Antarctica Microbes found ~ 400 feet above lake in an ice core

Freeze-dried for ~ 10^{6} yrs?
Revive when exposed to liquid
Lower limit is probably about $-20^{\circ} \mathrm{C}(253 \mathrm{~K})$

Upper Limit?

We have learned that some microbes can survive in pressurized water at T up to $400 \mathrm{~K}\left(120^{\circ} \mathrm{C}\right)$!

Such microbes have special adaptations to protect their heat-sensitive molecules

For complex life, upper limit seems to be $\sim 325 \mathrm{~K}$
$\sim 52^{\circ} \mathrm{C}$ or $126^{\circ} \mathrm{F}$
But is this limit just an accident of evolution on Earth?

Other Habitable Zones

Microbial Habitable Zone (MHZ)
Fixed by Range of T microbes can withstand
"Animal" Habitable Zone (AHZ)
"Animal" = complex, differentiated, multicellular life
Ward + Brownlee in Rare Earth note AHZ much smaller than MHZ

They also argue that parts of our Galaxy unsuitable for animal life

We will consider this point under f_{i}

Snowball Earth

Increasing evidence that Earth nearly froze over twice
2.4 billion years ago \& 650-800 Myr ago

Climate can have dramatic changes

Apparently - these were ended by volcanic eruptions that put much more CO_{2} in atmosphere

Other Considerations

1. Sub-surface Water?

If you don't need photosynthesis, no need to be on surface

T increases with depth into Earth

- liquid water under "ground"
e.g. Mars? Europa (Moon of Jupiter)
$\mathrm{HZ} \longrightarrow$ 1.5 AU 5 AU
$\mathrm{n}_{\mathrm{p}} \sim 2 \sim 3$

2. Other Solvents

e.g. Titan (moon of Saturn) could have liquid methane $\left(\mathrm{CH}_{4}\right)$ or ethane $\left(\mathrm{C}_{2} \mathrm{H}_{6}\right)$

$$
\begin{aligned}
& \mathrm{HZ} \longrightarrow 10 \mathrm{AU} \\
& \mathrm{n}_{\mathrm{p}} \longrightarrow \sim 4
\end{aligned}
$$

3. Other planetary systems

Jupiter-like planets ~ 1 AU (in HZ)
Life on Moons?

Other requirements?

Pressure? Bacteria on deep sea floor up to 1000 atmospheres
But not "animal" life

Not too salty? - halophilic bacteria up to 33% salt solution
pH? - LOG [H ions]

Almost all cells regulate pH to 7.7
$1 \longleftarrow$ microbes $\longrightarrow 13$

Again microbes have adapted to just about any environment of Earth

Importance of Heavy Elements

Planetary systems found so far

Are found more commonly around stars with a lot of heavy elements

Does this apply to systems more like ours?

The Importance of the Moon

The Moon makes the tides bigger than if only the Sun caused tides
May be important in the origin of life

The Moon stabilizes the Earth's obliquity

Varies regularly from 22.1 to 24.5 over 41,000 yrs.

Without the Moon, tugs from other planets could make it vary chaotically

Large obliquity could cause snowball Earth

Ward \& Brownlee

Only if a large supercontinent at the poles
Williams, Kasting, Caldeira

Issues Raised by Discovery of Other Planetary Systems

1. We know that not all planetary systems are like ours

But, searches so far could not find systems like ours [most could be like ours
2. Exotic possibilities for life

Europa-like moons around giant planets orbiting $\sim 1 \mathrm{AU}$

Stellar Requirements (f_{s})

1. Sufficient Heavy Elements

Terrestrial planets, bioelements

1st generation - ruled out
Population II - ruled out

No significant loss
2. Main Sequence
(Stable L \quad Stable T possible)
e.g. Sun will increase L by 10^{3}
$5 \square 10^{9} \mathrm{yr}$ from now

Red Giants - ruled out
0.99 OK
3. Stellar Mass Not Too High (Main sequence Life $\geq 5 \square 10^{9} \mathrm{yr}$)

Roughly, L $M^{4} \quad$ Fuel

Stellar Lifetimes

$M\left(M_{\odot}\right)$
30
10
3
1
$1 / 3$
$1 / 10$

Lifetime (yrs)
$2 \square 10^{6}$
$3 \square 10^{7}$
$6 \square 10^{8}$
$1 \square 10^{10}$
$2 \square 10^{11}$
$3 \square 10^{12}$

If $t>5 \square 10^{9}$ yrs

$\mathrm{M}<1.25 \mathrm{M}$ \bigcirc
$M>1.25 \mathrm{M} \quad$-ruled out if we require 5×10^{9} yr for intelligeht life to evolve

Most stars are low mass, so
0.90 OK

4. Stellar Mass Not Too Low

a) Do terrestrial planets form?
"Jupiters" should form closer to low mass star
Prevent formation of terrestrial planets?
b) Chance of having terrestrial planet in CHZ ?

CHZ smaller for Low L

For Logarithmic Spacing, n_{p} independent of size

Lower L
Higher L

But if planet spacing as in Solar System and
CHZ not smaller than innermost planet orbit
Chances are the same
c) Low mass stars have strong flares

High energy particles?

Fig. 5. Evolution of the F around stars of different masses assuming that co starts are possible. Case critical fluxes were usea and the evolution was truncated at the end of $t>$ main sequence phase.

Fig. 6. Evolution of the HZ around stars of different masses assuming that cold starts are not possible. Case 2 critical fluxes were used and the evolution was truncated at the end of the main sequence phase.
d) Synchronous Rotation (Same side always faces star)
$\mathrm{T} \quad\left(\frac{\mathrm{L}}{\mathrm{D}^{2}}\right)^{1 / 4} \quad \frac{\mathrm{~L}^{1 / 4}}{\mathrm{D}^{1 / 2}}$ Tidal Forces $\quad \frac{1}{\mathrm{D}^{3}}$
— As D decreases, Tidal forces become much more important

Cause synchronous rotation

Gravity greatest on side closest
— Bulge

+ Rotation = Tides

If Rotation \neq orbital period, friction
\longrightarrow tends toward synchronous rotation (but effect of other planets may prevent this)

$M>0.5 M_{\odot} \square 0.25 O K$
$\mathrm{M}<0.5 \mathrm{M}_{\odot}$ - ruled out (maybe)

Fig. 8. The ZAMS HZ (dark solid curve) as a function of stellar mass for Case 2 fluxes. The long-dash lines delineate the most probable terrestrial planet formation zone. The short-dash line is the radius for which an Earthlike planet in a circular orbit would be synchronously or slowly rotating as a result of tidal damping. Note that all such planets in the $H Z$ around M stars are within this radius.

1. Habitable zone limits for the three stars listed in Table 2. The solid lines esent the "recent Venus" and "early Mars" limits; the long-dashed lines esent the "runaway greenhouse" and "maximum greenhouse" limits; and short-dashed lines represent the "water loss" and "1 ${ }^{\text {st }} \mathrm{CO}_{2}$ condensation" s. "Recent Venus" and "early Mars" limits for the MO and FO stars were 'd to our own Sun using the $\mathrm{S}_{\text {eff }}$ values for "water loss" and "maximum nhouse," respectively. The circles at the top represent the six innermost ets in our Solar System.

5. Binary Stars

a) Unstable orbits

Unless two stars widely separated or very close

Need

$\frac{\text { Distance to Second Star }}{\text { Distance to Planet }}>\frac{7}{1}$ or $<\frac{1}{7}$

or

* (more likely)

Stable orbits around a Binary Star
b) Varying temperature in orbit also need ~ $7: 1$
c) Both stars on main sequence, $\mathrm{M}<1.25 \mathrm{M}_{\mathrm{O}}, \ldots$

2/3 of all stars are binaries
2/3 ~ "wide enough"
Binaries ruled out? $\mathrm{f}_{\mathrm{s}}<1 / 3$ (if you kept them for f_{p}) Not > 7 : 1 ruled out? $\mathrm{f}_{\mathrm{s}}<1 / 2$

Summary

Requirement Fraction OK
Cumulative

1. Heavy Elements	1.0	1.0	
2. Main Sequence	0.99	0.99	
3. $\mathrm{M}<1.25 \mathrm{M}_{\mathrm{sin}}$	0.90	0.89	
4. $\mathrm{M}>0.5 \mathrm{M}_{\mathrm{sin}}$	0.25	0.22	
$?$	5. Not binary	0.3	0.07
	5. 7:1 Separation	0.5	0.11

Bottom Line

- Points 1 to 3 are pretty clear
- Points 4 and 5 are less established
- Room for different estimates for f_{s}
- Range 0.07 to 0.89 OK
- Then final step:

$$
-n_{e}=n_{p} f_{s}
$$

