Planet Formation and Detection

Estimating f_{p}

Planet Formation

SMM image of Vega JACH, Holland et al.

SMM image of Vega shows dust peaks off center from star (*). Fits a model with a Neptune like planet clearing a gap. Can test by looking for motion of clumps in debris disk.

Disks versus Age of Star Evidence for Collisions

Binary Stars

- About $2 / 3$ of all stars are in binaries
- Most common separation is 10-100 AU
- Can binary stars have disks?
- Yes, but binary tends to clear a gap
- Disks well inside binary orbit
- Or well outside binary orbit

Brown Dwarfs

- Stars range from 0.07 to $\sim 100 \mathrm{M}_{\text {sun }}$
- Jupiter is about $0.001 \mathrm{M}_{\text {sun }}$
- Brown dwarfs between stars and planets
- Dividing line is somewhat arbitrary
- Usual choice is $13 \mathrm{M}_{\text {jupiter }}$
- Brown dwarfs rarely seen as companions to stars
- But "free-floaters" as common as stars
- Many young BDs have disks
- Planets around BDs?

Planet Detection
Methods and Results

Can We See Them?

- Not yet, but there are plans...
- Problem is separating planet light from star light
- Star is 10^{9} times brighter in visible light
- "Only" 10^{6} times brighter in infrared

Planet is Much Fainter than Star

Indirect Detection

Wobbling star

Detect effect of planet on star (both orbit around center of mass)

Large planet will make a star "wobble"

Star and Planet Orbit Center of Mass

The Sun as viewed from 10 pc (~30 $/ \mathrm{y})$

The Astrometric Technique

Measure stellar position (angle) accurately - see wobble compared to more distant stars

How far does the star wobble?
Center of mass

We measure angle; for small angles,

$$
\Theta=\frac{R_{*}}{D} \quad \text { in radians }
$$

$$
\begin{array}{ll}
\text { so } \quad \Theta=\frac{M_{p l} r}{M_{*}} \frac{r}{D} \quad \begin{array}{l}
\text { Big planet, big orbit } \\
\text { small star, close to sun }
\end{array}
\end{array}
$$

Current limit: $1 \mathrm{mas}=10^{-3}$ arcsec $=2.8 \times 10^{-6}$ degrees

$$
=4.9 \times 10^{-8} \quad \text { radians }
$$

e.g. $M_{p l}=M_{\text {Jupiter }}, M_{*}=M_{\odot}, D=15 l y \Rightarrow \Theta=1 \mathrm{mas}$

Planet	M_{P} $\left(\mathrm{M}_{\mathrm{J}}\right)$	R (AU)	P $($ years $)$	$\mathrm{V} \star$ $\left(\mathrm{m} \mathrm{s}^{-1}\right)$	Θ at 10 pc (mas)
Mercury	$1.74 \mathrm{E}-4$	0.387	0.241	0.008	$6.4 \mathrm{E}-6$
Venus	$2.56 \mathrm{E}-3$	0.723	0.615	0.086	$1.8 \mathrm{E}-4$
Earth	$3.15 \mathrm{E}-3$	1.000	1.000	0.089	$3.0 \mathrm{E}-4$
Mars	$3.38 \mathrm{E}-4$	1.524	1.881	0.008	$4.9 \mathrm{E}-5$
Jupiter	1.0	5.203	11.86	12.4	0.497
Saturn	0.299	9.54	29.46	2.75	0.273
Uranus	0.046	19.18	84.01	0.297	0.084
Neptune	0.054	30.06	164.8	0.281	0.156
Pluto	$6.3 \mathrm{E}-6$	39.44	247.7	$3 \mathrm{E}-5$	$2.4 \mathrm{E}-5$

The Spectroscopic Technique

Measure velocity, not position, of star
Use spectrometer to get Doppler Shift of spectral line

Big planet, small orbit
Shift $\propto \quad V_{*} \propto \frac{M_{p l}}{M_{*}^{1 / 2} r^{1 / 2}}$ Small star
Distance doesn't matter (except for brightness)
Edge - On

The Doppler Shift

Light is a wave

wavelength seen by wavelength seen by \mathcal{f}
BLUESHIFT

REDSHIFT

$$
\frac{\lambda \text { observed }}{\lambda \text { emitted }}=1+\frac{\mathbf{v}}{\mathbf{c}}
$$

Doppler Shift \longrightarrow Magnitude and direction of velocity

But only along line-of-sight

Motion of the Sun caused by Jupiter, ...

Planet	M_{P} $\left(\mathrm{M}_{\mathrm{J}}\right)$	R (AU)	P $($ years $)$	$\mathrm{V} \star$ $\left(\mathrm{m} \mathrm{s}^{-1}\right)$	Θ at 10 pc (mas)
Mercury	$1.74 \mathrm{E}-4$	0.387	0.241	0.008	$6.4 \mathrm{E}-6$
Venus	$2.56 \mathrm{E}-3$	0.723	0.615	0.086	$1.8 \mathrm{E}-4$
Earth	$3.15 \mathrm{E}-3$	1.000	1.000	0.089	$3.0 \mathrm{E}-4$
Mars	$3.38 \mathrm{E}-4$	1.524	1.881	0.008	$4.9 \mathrm{E}-5$
Jupiter	1.0	5.203	11.86	12.4	0.497
Saturn	0.299	9.54	29.46	2.75	0.273
Uranus	0.046	19.18	84.01	0.297	0.084
Neptune	0.054	30.06	164.8	0.281	0.156
Pluto	$6.3 \mathrm{E}-6$	39.44	247.7	$3 \mathrm{E}-5$	$2.4 \mathrm{E}-5$

What We Can Learn

1. There is a planet
(If not a mistake)
2. The orbital period (P)
(The time for pattern to repeat)
3. The orbital radius
$r^{3} \propto M_{*} \mathrm{P}^{2}$
(Kepler's Third Law)
4. Lower limit to planet mass $\left(\mathrm{M}_{\mathrm{pl}}\right)$

Conservation of momentum \qquad

$$
\begin{aligned}
M_{p l} & \geqslant \frac{M_{*} V_{\star} P}{2 \pi r} \\
& =\text { if we see orbit edge-on } \\
& >\text { if tilted }
\end{aligned}
$$

Comparison of Search Methods

Advantages

Astrometric
Big Planet
Big Orbit
Small Star
Nearby Star

Astrometric	Spectroscopic
Big Planet	Big Planet
Big Orbit	Small Orbit
Small Star	Small Star
Nearby Star	--

Edge-on Orbit

Other Methods

Transits: Planet passes in front of a star

Only about 0.5\% of stars with planets will line up
planet
star

First planet found with this method in January 2003; 5 detected as of January 2005

Microlensing: Light from more distant star is focused by gravity of nearer star passing in front

Fortuitous alignment \Rightarrow brightens

One planet found this way as of January 2005

Planets from the Transit Method

OGLE-TR-10

Planet Detected by Microlensing

Sharp spikes indicate second lens. Mass of second lens only 0.4% as massive as star. Companion is very likely a planet.

OGLE 2003-BLG-235/MOA 2003-BLG-53

Future Prospects

Direct detection (and study) of Earth-like planets
~ 2015 Terrestrial Planet Finder (TPF) Darwin (Europe)

Astrometric Method GAIA ~ 2010
Ms Planets out to 600 ly .

Further Spectroscopic Searches

Transits
Kepler (~ 2007)
Monitor 100,000 stars for 4 years
"Hundreds of Terrestrial Planets"

Comparative Image of Extrasolar Systems
PLANETS AROUND NORMAL STARS

Courtesy San Francisco State University Astronomy Department

The Upsilon Andromedae System

Our Inner Solar System

Mercury':
0.39 AU . 89 day orbit:

Venus
0.73 AU .228 day orbit

Earth
1.00 AU 1 year orbit.

Mars
1.54 AU 1.9 year orbit

Artist's conception of the view from the outmost planet of three in Upsilon Andromedae

Artist's conception of Transit of HD209458

Artist's conception of 47 U ma "view" from Moon of the Second Planet

Implications of New Planets

Planets more massive than Jupiter can form around stars like the Sun.

Large Planets can form much closer to a star than Jupiter (or move there)

Does this mean we are unusual and our ideas about other planetary systems are just "solar system chauvinism"?

Not necessarily.

The ones found so far are the "easy" ones. (Big planets close to a star)
Now there are many more with lower masses than higher masses

Too early to say that we are unusual.

- with about 80 extrasolar planet candidates identified:

- more than 1000 stars examined.

Successful Doppler planet search programs:
ELODIE/CORALIE (H.P./La Silla) Mayor, Queloz, Udry, et al. (North/South)
Hamilton/HIRES (Lick/Keck) Marcy, Butler, Fischer, et al. (North)
Cs23 (McDonald 2.7m) Cochran, Hatzes (North)
AFOE (Whipple) Noyes, Brown, et al. (North)
ESO CES (La Silla) Kurster, Hatzes, Endl, et al. (South)
UCLES (AAT) Butler, Tinney, et al. (South)

Direct Detection in Future

- Terrestrial Planet Finder (TPF)/Darwin
- TPF-C Visible light coronagraph (~2014)
- TPF-I Infrared interferometer (~2020)
- Goal is to detect earth-mass planets
- And to see what gases in atmosphere
- Suitable for life?
- http://planetquest.jpl.nasa.gov/TPF/tpf_index.html

TPF Concepts

TPF-I Infrared Interferometer (2020)

TPF-C Visible light coronagraph (2014)

Spectroscopy of atmosphere

Planet Detection Methods

Michael Perryman, Rep. Prog. Phys., 2000, 63, 1209 (updated November 2004)
[corrections or suggestions please to michael.perryman@esa.int]

Brown Dwarfs

Between stars and planets:

$$
\begin{aligned}
& M<0.07 M_{\odot} \quad \text { cannot fuse hydrogen } \\
& \text { substellar } \\
& M \gtrsim 0.013 M_{\odot} \simeq 13 M_{\text {jup }} \quad \text { (This boundary is still argued about) }
\end{aligned}
$$

Emit infrared and cool slowly as they release gravitational potential energy
Very few are found as stellar companions

But they appear to be common as "free-floaters"
May have their own planets ??

Implications:

1. Stars and planets form in different ways (no intermediate masses in orbit)
2. There could be free-floating planets
3. Brown dwarfs might have planets (bigger f_{p} - but suitable for life??)

Current Statistics (Jan. 2005)

- Based on Extrasolar Planets Encyclopedia - http://www.obspm.fr/encycl/encycl.html
- 147 Planets in 128 systems
- 15 with multiple planets
- Most planets in one system is 4 (55 Cancri)
- Least massive $0.042 \mathrm{M}_{\mathrm{Jup}}=13 \mathrm{M}_{\text {Earth }}$

Estimating f_{p}

- Maximum? $\mathrm{f}_{\mathrm{p}} \sim 1$
- All young stars may have disks
- Binaries?
- Can have disks, but planet formation?
- Even if form planets, orbits may not be stable
- If reject binaries, $\mathrm{f}_{\mathrm{p}}<0.3$

Estimating f_{p}

- Minimum?
- Based on success rate of searches ($\mathrm{n}_{\text {found }} / \mathrm{n}_{\text {searched }}$)
- Estimates now up to $5 \%\left(f_{p}>0.05\right)$
- Note larger than 0.02 given in book
- Extrapolate trends to finding
- Smaller planets, larger orbits, ...
- Estimates range from 0.11 to 0.25
- Allowed range: $f_{p}=0.05$ to 1.0
- Explain your choice!
- Include/exclude binaries?

