## Cosmic Evolution, Part II

## Heavy elements $\rightarrow$ molecules

First a review of terminology:





Molecule: Repulsive ~ Attractive

More delicate than atoms can be <u>much</u> more complex



(Room Temperature)

# Questions

• Why is room temperature around 300 K?

#### **Conventions:** H - H $CO_2$ O = C = O $H_2$ ∱ Bond Double Bonds Maximum # of Bonds: 1 Η 2 $\bigcirc$ Ν 3 С 4

Carbon very versatile → Complex chemistry

# Interstellar Molecules

Exist as gas (individual molecules)A few known in 1930'sMany more since 1968 - Radio astronomy

Vibration J MMMMM

Rotation

Radio Telescope

**Optical Telescope** 



Others of Note: CO Most common after H<sub>2</sub> HCN, HC<sub>3</sub>N, ... HC<sub>11</sub>N  $\rightarrow$  Carbon chains CH<sub>4</sub> (Methane) PAHs (Polycyclic aromatic hydrocarbons)

#### Appendix 2

#### Interstellar Molecules

|           | Species                       | Name                | Speci                         |
|-----------|-------------------------------|---------------------|-------------------------------|
|           | H <sub>2</sub>                | molecular hydrogen  | 002                           |
|           | C <sub>2</sub>                | diatomic carbon     | OCS                           |
|           | CH                            | methylidyne         | SO <sub>2</sub>               |
|           | CH <sup>+</sup>               | methylidyne ion     | SiC <sub>2</sub>              |
|           | CN                            | cyanogen            | SiCN                          |
|           | 00                            | carbon monoxide     | AICN                          |
|           | CO+                           | carbon monoxide ion | C <sub>2</sub> S              |
|           | CS                            | carbon monosulfide  | C20                           |
|           | OH                            | hydroxyl            | C3                            |
|           | HC1                           | hydrogen chloride   | MgCN                          |
|           | NH                            |                     | MgNC                          |
|           | NO                            | nitric oxide        | NaCN                          |
|           | NS                            | nitrogen sulfide    |                               |
|           | SIC                           | silicon carolge     | C <sub>2</sub> H <sub>2</sub> |
|           | SiS                           | silicon multide     | CaH                           |
|           | SiN                           | silicon nitride     | H <sub>2</sub> CO             |
|           | SO                            | sulfur monoxide     | H <sub>2</sub> CN             |
|           | PN                            |                     | HCaN                          |
|           | CP                            | •                   | NH                            |
|           | SO <sup>+</sup>               | sulfoxide ion       | HNCC                          |
|           | NaC1                          | sodium chloride*    | HOCY                          |
|           | AICI                          | aluminum chloride*  | INCOL                         |
|           | KC1                           | potassium chloride* | HUNIC                         |
|           | AIF                           | aluminum fluoride*† | CoN                           |
|           | FeO                           | iron monoxide       | Cin                           |
|           | HF                            |                     | C30                           |
|           | SH                            |                     | U35                           |
|           |                               | han di              | H <sub>2</sub> CS             |
|           | $H_3^+$                       | protonated hydrogen | H30*                          |
|           | C <sub>2</sub> H              | cthynyl             | SIC3                          |
|           | CH <sub>2</sub>               | methylene †         | 0.11                          |
|           | HCN                           | hydrogen cyanide    | Carl                          |
|           | HNC                           | hydrogen isocyanide | C3H2                          |
|           | HCO                           | formyl              | H2CC                          |
| Malaaulaa | HCO+                          | formyl ion          | CH-C                          |
| wolecular | < HCS <sup>+</sup>            | thioformyl ion      | LIC.N                         |
| lons      | HOC+                          | isoformyl ion †     | HNC-                          |
|           | N <sub>2</sub> H <sup>+</sup> | protonated nitrogen | CIL C                         |
|           | HNO                           | nitroxyl            | CH <sub>2</sub> C             |
|           | H <sub>2</sub> O              | water               | CU-N                          |
|           | H <sub>2</sub> S              | hydrogen sulfide    | UC-N                          |
|           | HON                           | hydrogen nitride    | HC2N                          |
|           | NoO                           | nitrous oxide       | CH4                           |
|           | 1120                          | ALL OLD CARE        |                               |

| Species                       | Name                    |
|-------------------------------|-------------------------|
| 202                           | carbon dioxide          |
| ocs                           | carbonyl sulfide        |
| 502                           | sulfur dioxide          |
| SiC <sub>2</sub>              | silicon dicarbide*      |
| SICN                          |                         |
| AICN                          |                         |
| C2S                           |                         |
| C2O                           | dicarbon monoxide †     |
| C3                            | triatomic carbon*       |
| MgCN                          | magnesium cyanide       |
| MgNC                          | magnesium isocyanide*   |
| NaCN                          | sodium cyanide          |
|                               |                         |
| C <sub>2</sub> H <sub>2</sub> | acetylene               |
| СзН                           | propynylidyne (l and c) |
| H <sub>2</sub> CO             | formaldehyde            |
| H <sub>2</sub> CN             |                         |
| HC2N                          |                         |
| NH <sub>3</sub>               | asimonia                |
| INCO                          | isocyanic acid          |
| HOCO+                         |                         |
| HCNH <sup>+</sup>             |                         |
| INCS                          | isothiocyanic acid      |
| C <sub>3</sub> N              | cyanoethynyl            |
| C3O                           | tricarbon monoxide      |
| C3S                           |                         |
| H <sub>2</sub> CS             | thioformaldehyde        |
| H <sub>3</sub> O <sup>+</sup> | hydronium ion           |
| SiC <sub>3</sub>              |                         |
|                               | hastadia mad            |
| Calla                         | cuclomonanulidana       |
| HACCC                         | nonedienvlidene         |
| HOOOH                         | formic acid             |
| CH-CO                         | ketene                  |
| HC3N                          | cvanoacetviene          |
| HINC3                         |                         |
| CH-CN                         | cvanomethyl             |
| NH2CN                         | cyanamide               |
| CH2NH                         | methanimine             |
| HC2NC                         |                         |
| CHA                           | methane                 |
|                               |                         |

| Species                                                 | Name                            | Species                            | Name                 |
|---------------------------------------------------------|---------------------------------|------------------------------------|----------------------|
| H <sub>2</sub> COH <sup>+</sup>                         | protonated formaldehyde         | HCSN                               | cyanodiacetylene     |
| SiH4                                                    | silane*                         | C-H                                |                      |
| C4S1                                                    |                                 | ucoocu                             | mathe 1 Comments     |
| C <sub>5</sub>                                          | pentatomic carbon*              | CH <sub>3</sub> C <sub>3</sub> N   | methylcyanoacetylene |
| CsH                                                     | pentynylidyne                   | CH <sub>3</sub> COOH               | acetic acid          |
| CsN                                                     | 1.1.1.                          | H <sub>2</sub> C <sub>6</sub>      |                      |
| C <sub>2</sub> H <sub>4</sub>                           | ethylene*                       | CH2OHCHO                           | glycolaldehyde       |
| H <sub>2</sub> CCCC                                     | butatrienylidene                |                                    |                      |
| CH <sub>3</sub> OH                                      | methanol                        | CH <sub>3</sub> C <sub>4</sub> H   | methyldiacetylene    |
| CH <sub>3</sub> CN                                      | methyl cyanide                  | CH <sub>3</sub> CH <sub>3</sub> O  | dimethyl ether       |
| CH3NC                                                   | methyl isocyanide               | CH <sub>3</sub> CH <sub>2</sub> CN | ethyl cyanide        |
| CH <sub>3</sub> SH                                      | methyl mercantan                | CH <sub>3</sub> CH <sub>2</sub> OH | ethenol              |
| NH2CHO                                                  | formamide                       | HC7N                               | cyanohexatriyne      |
| HC3HO                                                   | propynal                        | CaH                                |                      |
| HC3NH <sup>+</sup>                                      |                                 | CH3C4CN                            | +                    |
|                                                         |                                 | CH2CH2CO                           | acatome              |
| C6H                                                     |                                 | NH2CH2CO                           | OH abscinet          |
| CH <sub>2</sub> CHCN                                    | vinyl cyanide                   | CHaOHCHaOH athulana atmal          |                      |
| CH <sub>3</sub> C <sub>2</sub> H                        | methylacetylene                 | chizonchizo                        | on onyiche giyoor    |
| CH <sub>3</sub> CHO                                     | acetaldehyde                    | HC9N                               | cyano-octa-tetra-yne |
| C <sub>2</sub> H <sub>4</sub> O<br>CH <sub>2</sub> CHOH | ethylene oxide<br>vinyl alcohol | HC <sub>11</sub> N                 | cyano-deca-penta-yne |

\* Detected in circumstellar envelopes only † tentative

### Look at Appendix 2

173

Important Probe of conditions

- Discovered in Infrared - Discovered in UV ---- Relevant to the Origin of Life

## How we detect Interstellar Molecules

Radio Spectroscopy (Mostly  $\lambda \sim 1-3$  mm)

+ Precise knowledge of wavelengths for different molecules



# <u>3 Lessons</u>

- Complexity (Up to 13 atoms) is extraterrestrial May be more complex (Hard to detect) Glycine ? 1994 Polycyclic Aromatic Hydrocarbons (PAHs) (Infrared evidence)
- 2. Dominance of Carbon Carbon Chemistry not peculiar to Earth
- 3. Formation & Destruction <u>Analogous</u> to early Earth



Protection by dust grains: scatter and absorb ultraviolet

# Dust

Studies of how they scatter and absorb light (Ultraviolet  $\rightarrow$  Visible  $\rightarrow$  Infrared)

 $\Rightarrow$  Two types, range of sizes up to 10<sup>-6</sup> m

Carbon PAHs → Graphite ~ Soot Silicates Si + O + Mg, Fe, ...

Both Produced by old stars

# **Formation of Interstellar Molecules**

1. H<sub>2</sub>

Must lose the potential energy difference before it falls apart (~ 10<sup>-14</sup> s) Collisions: OK in lab, too slow in space

Emit photon: <u>very</u> slow for H<sub>2</sub> (10<sup>7</sup> s) H + H + catalyst = H<sub>2</sub> + catalyst surface of dust grain  $H_{2}$  $H_{2}$  $H_{2}$  $H_{2}$  $H_{2}$ 

# **Formation of Interstellar Molecules**

More complex molecules
 Problem is activation energy barrier
 T ~ 10 K << Barrier</p>
 Use reactions <u>without</u> activation energies
 e.g. Molecular ions, like HCO<sup>+</sup>

Cosmic Ray  $\longrightarrow H_2 \rightarrow H_2^+$   $H_2^+ + H_2 \rightarrow H_3^+ + H$   $H_3^+ + CO \rightarrow HCO^+ + H_2$  $XH^+ + e^- \rightarrow X + H$  Energy + simple mol. → Reactive mol. ↓ More complex



## **Molecules on Dust Grains**



Stick on grains "ice"

Infrared observations show this: as molecules Vibrate, absorb infrared e.g.  $H_2O$  absorbs at  $3 \times 10^{-6}$  m  $CH_4$  absorbs at  $8 \times 10^{-6}$  m

### **Molecules on Dust Grains**

Icy "mantles" contain H, O, C, N Further reactions possible  $\rightarrow$  more complex molecules (e.g. Ethanol)

- → Building blocks of life ?
- → Life ??? Hoyle and Wickramasinghe

New stars and planets form in same regions

# Implications

- 1. Similar (Carbon-Dominated) Chemistry
- 2. Direct Role in Origin of Life?
- 3. Formation + Destruction Analogous to Early Earth

### Roles of Dust

- 1. Protection from UV
- 2.  $H_2$  Formation
- 3. Depletion  $\rightarrow$  Mantles of Ice H<sub>2</sub>O, NH<sub>3</sub>, CH<sub>4</sub>, CO<sub>2</sub>, HCOOH, ...  $\uparrow$ Methane

## Estimate of Average Star Formation Rate (R<sub>\*</sub>)

- $R_{*} = \frac{\text{\# of stars in galaxy}}{\text{lifetime of galaxy}} = \frac{N_{*}}{t_{gal}}$
- N<sub>\*</sub>: Count them? No Use Gravity (Newton's Laws) Sun orbiting center of galaxy at 250 km s<sup>-1</sup> (155 miles per second)

Kinetic energy =  $\frac{1}{2}$  gravitational potential energy  $\frac{1}{2}$  M<sub>☉</sub> v<sup>2</sup> =  $\frac{1}{2}$   $\frac{G M_g M_{\odot}}{R_g}$  Distance of Sun from center of galaxy  $\frac{R_g v^2}{G} = M_g$ 

### Estimate of Average Star Formation Rate (R\*)

 $(R_g = 25,000 \text{ ly}) \rightarrow M_g = 1.0 \times 10^{11} \text{ M}_{\odot}$ 

Add stars outside Sun's orbit  $\rightarrow M_g \simeq 1.6 \times 10^{11} M_{\odot}$ 



 $T_{gal} \simeq 10^{10} \text{ yr}$  (studies of old stars)

 $R_* \simeq \frac{4 \times 10^{11}}{10^{10}}$  stars = 40 stars per year (5 - 50)

# **Star Formation**

## **Current Star Formation**

# **Molecular Clouds**

### Composition

- H<sub>2</sub> (93%), He (6%)
- Dust and other molecules (~1%)
  - CO next most common after H<sub>2</sub>, He
- Temperature about 10 K
- Density (particles per cubic cm)
  - $\sim 100 \text{ cm}^{-3} \text{ to } 10^6 \text{ cm}^{-3}$
  - Air has about 10<sup>19</sup> cm<sup>-3</sup>
  - Water about  $3 \times 10^{22} \text{ cm}^{-3}$
- Size 1-300 ly
- Mass 1 to 10<sup>6</sup> M<sub>sun</sub>

# A Small Molecular Cloud



## **Ices on Dust Grains**



## **Current Star Formation**

Occurs in gas with heavy elements

Molecules and dust keep gas cool
Radiate energy released by collapse
Stars of lower mass can form
Mass needed for collapse increases with T

Star formation is ongoing in our Galaxy

Massive stars are short-lived
Star formation observed in infrared

## The Launch of The Spitzer Space Telescope



Spitzer Space Telescope Launched Aug. 2003, expect a 5 yr life



# Visible to Infrared Views









# A Dark Molecular Cloud



L1014 distance ~ 600 ly, but somewhat uncertain.

Red light image;dust blocks stars behind and our view of what goes on inside.

## Forming Star Seen in Infrared



Three Color Composite: Blue = 3.6 microns Green = 8.0 microns Red = 24 microns

R-band image from DSS at Lower left.

We see many stars through the cloud not seen in R. The central source is NOT a background star.

L1014 is forming a star

C. Young et al. ApJS, 154, 396

# Artist's Conception



Features: Dusty envelope Rotation Disk Bipolar outflow

### R. Hurt, SSC

# The Protostar

- Evolution of the collapsing gas cloud
  - At first, collapsing gas stays cool
  - Dust, gas emit photons, remove energy
  - At n ~  $10^{11}$  cm<sup>-3</sup>, photons trapped
  - Gas heats up, dust destroyed, pressure rises
  - Core stops collapsing
  - The outer parts still falling in, adding mass
  - Core shrinks slowly, heats up
  - Fusion begins at T ~  $10^7$  K
  - Protostar becomes a main-sequence star

# The Disk



The Star (AU Mic) is blocked in a coronograph. Allows you to see disk. Dust in disk is heated by star and emits in infrared.

# Angular Momentum

- Measure of tendency to rotate
   J = mvr
- Angular momentum is conserved
  - -J = constant
  - As gas contracts (r smaller), v increases
  - Faster rotation resists collapse
  - Gas settles into rotating disk
  - Protostar adds mass through the disk

# The Wind

- Accretion from disk will spin up the star
   <u>– Star would break apart if spins too fast</u>
- Angular momentum must be carried off
- The star-disk interaction creates a wind
- The wind carries mass to large distances
  - J = mvr, small amount of m at very large r
  - Allows star to avoid rotating too fast
- Wind turns into bipolar jet
  - Sweeps out cavity

# The Bipolar Jet



#### Embedded Outflow in HH 46/47

NASA / JPL-Caltech / A. Noriega-Crespo (SSC/Caltech)

Spitzer Space Telescope • IRAC Insect visible light (038) sec2003-064

# Studying the Disk



### Robert Hurt, SSC

#### Funduppluan et al. 2004/0, ApJ, accepted



#### Ices in a Protoplanetary Disc

Spitzer Space Telescope • IRS ESO • VLT-ISAAC ssc2004-20c

NASA / JPL-Caltech / K. Pontoppidan (Leiden Observatory)