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the opposition to Copernicanism into a hopeless rear-guard action. The
rest of this chapter examines that new evidence drawn from the
heavens by three of Copernicus' immediate successors.

Tycho Brahe

If Copernicus was. the greatest European astronomer in the
first half of the sixteenth century, Tycho Brahe (1546-1601) was the
preeminent astronomical authority of the second. And, judged purely
by technical proficiency, Brahe was the greater man. But comparison
is largely meaningless, because the two have different strengths and
weaknesses which would not readily have merged in a single person-
ality, and both sorts of strength were essential to the Coperni~an Revo-
lution. As a cosmological and astronomical theorist, Brahe displayed
a relatively traditional frame of mind. His work shows little of that
Neoplatonic concern with mathematical harmonies that had been in-
strumental in Copernicus' break with the Ptolemaic tradition and
that at the start provided the only real evidence of the earth's motion.
He propounded no enduring innovations in astronomical theory. He
was, in fact, a lifelong opponent of Copernicanism, and his immense
prestige helped to postpone the conversion of astronomers to the new
theory.

But though Brahe Was no innovator of astronomical concepts, he
was responsible for immense changes in the techniques of astronomi-
cal observation and in the standards of accuracy demanded from
astronomical data. He was the greatest of all naked-eye observers.
He designed and built many new instruments, larger, stabler, and
better calibrated than those in use before. With great ingenuity he
investigated and corrected many errors that developed in using these
instruments, establishing a whole series of new techniques for the col-
lection of accurate information about the position of planets and stars.
Most important of all, he began the practice of making regular obser-
vations of planets as they moved through the heavens rather than
observing them only when in some particularly favorable configura-
tion. Modern telescopic observation indicates that when Brahe took
particular care in determining the position of a fixed star his data
were consistently accurate to l' of arc or better, a phenomenal achieve-
ment with the naked eye. His observations of planetary position seem
normally to have been reliable to about 4' of are, more than twice the
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accuracy achieved by the best observers of antiquity. But even more
important than the accuracy of Brahe's individual observations was
the reliability and the scope of the entire body of data he collected. In
his own lifetime he and the observers he trained freed European astron-
omy from its dependence on ancient data and eliminated a whole series
of apparent astronomical problems which had derived from bad data.
His observations provided a new statement of the problem of the
planets, and that new statement was a prerequisite to the problem's
solution. No planetary theory could have reconciled the data employed
by Copernicus. .

Trustworthy, extensive, and up-to-date data are Brahe's primary
contribution to the solution of the problem of the planets. But he has
another and a larger role in the Copernican Revolution as the author
of an astronomical system that rapidly replaced the Ptolemaic system
as the rallying point for those proficient astronomers who, like Brahe
himself, could not accept the earth's motion. Most of Brahe's reasons
for rejecting Copernicus' proposal are the usual ones, though he de-
veloped them in more detail than most of his contemporaries. But
Brahe gave particular emphasis to the immense waste space that the
Copernican theory opened between the sphere of Saturn and the
stars merely to account for the absence of observable parallactic mo-
tion. He himself had looked for parallax with his great new instru-
ments. Since he found none, he felt forced to reject the earth's motion.
The only alternative compatible with his observations would have
required a distance between the stellar sphere and Saturn seven
hundred times the distance between Saturn and the sun.

But Brahe was nothing if not a proficient astronomer. Though he
rejected the earth's motion, he could not ignore the mathematical
harmonies which the De Revolutionibus had introduced into astron-

omy. Those new harmonies did not convert him - they were not, for
him, sufficiently strong evidence to counterbalance the difficulties in-
herent in the earth's motion - but they must at least have increased his

discontent with the Ptolemaic system, and he rejected it, too, in favor
of a third system of his own invention. Brahe's system, the "Tychonic,"
is shown in Figure 37. Once again the earth lies stationary at the
geometric center of a stellar sphere whose daily rotation accounts
for the diurnal circles of the stars. As in the Ptolemaic system, the
sun, moon, and planets are carried westward daily with the stars by
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the outer sphere, and they have additional eastward orbital motions
of their own. In the diagram these orbital motions are represented by
circles, though in the full Tychonic system minor epicycles, eccen-
trics, and equants are also required. The circles of the moon and sun
are centered on the earth; to this point the system is still Ptolemaic.
But the centers of. the. five remaining planetary orbits are transferred
from the center of the earth to the sun. Brahe's system is an exten-
sion, though perhaps not a conscious one, of Heraclides' system, which
attributed sun-centered orbits to Mercury and Venus.

DIURNAL

Figure 37. The Tychonic system. The earth is once again at the center of a
rotating stellar sphere, and the moon and sun move in their old Ptolemaic orbits.
The other planets are, however, fixed on epicycles whose common center is the sun.

The remarkable and historically significant feature of the Tychonic

system i~ its adequacy as a compromise solution of the problems raised
by the De Revolutionibus. Since the earth is stationary and at the
center, all the main arguments against Copernicus' proposal vanish.
Scripture, the laws of motion, and the absence of stellar parallax, aU
are reconciled by Brahe's proposal, and this reconciliation is effected
without sacrificing any of Copernicus' major mathematical harmonies.
The Tychonic system is, in fact, precisely equivalent mathematically
to Copernicus' system. Distance determination, the apparent anomalies
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in the behavior of the inferior planets, these and the other new har-
monies that convinced Copernicus of the earth's motion are all pre-
served.

The harmonies of the Tychonic system may be developed individ-
ually and in detail by the same techniques employed in discussing
Copernicus' system, but for present purposes the following abbreviated
demonstration of the mathematical equivalence of the Copernican and
Tychonic systems should be sufficient. Imagine the sphere of the stars
in Figure 37 immensely expanded until an observer on the moving
sun could no longer observe any stellar parallax from opposite sides
of the sun's orbit. This expansion does not affect the system's mathe-
matical account of any of the planetary motions. Now imagine that
within this expanded stellar sphere the various planets are driven
about their orbits by a clockwork mechanism like that indicated sche-
matically in Figure 3& for the earth, the sun, and Mars. In the diagram
the sun is attached to the central earth by an arm of fixed length which
carries it counterclockwise about the earth, and Mars is attached to
the sun by another arm of fixed length which moves it clockwise about
the moving sun. Since the lengths of both arms are fixed throughout the
motion, the clockwork mechanism will produce just the circular orbits

indicated in Figure 37. -
Now imagine that, without interfering with the gears that drive

the arms in Figure 3&, the whole mechanism is picked up and, with
the arms turning as before, put down again with the sun fixed at the
central pQsition formerly held by the earth. This is the situation indi-
cated in Figure 38b. The arms have the same lengths as before; they
are driven at the same rates by the same mechanism; and they there-
fore retain the same relative positions at each instant of time. All of
the geometric spatial relations of the earth, sun, and Mars in the dia-
gram of Figure 38a are preserved by the arrangement of Figure 38b,
and since only the fixed point of the mechanism has been changed,
all the relative motions must be identical.

But the motions produced by the mechanism of Figure 38b are
Copernican motions. That is, the fixed arms shown in the second dia-
gram move both the earth and Mars in circular orbits about the sun,
and those orbits are just the basic ones de:;cribed by Copernicus.
Carrying out the same argument with the hypothetical mechanism
of Figure 38 elaborated to include all the planets, demonstrates that
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the equivalence is general. Omitting minor epicycles and eccentrics,
which have no bearing on the harmonies of Copernicus' system, the
Tychonic system is transformed to the Copernican system simply by
holding the sun fixed instead of the earth. The relative motions of the
planets are the same in both systems, and the harmonies are there-
fore preserved. Mathematically the only possible difference between
the motions in the two systems is a parallactic motion of the stars, and
that motion was eliminated at the start by expanding the stellar sphere
until parallax was imperceptible.
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Figure 38. The geometrical equivalence of (a) the Tychonic and (b) the
Copernican systems. In (a) the sun S is carried eastward about the stationary
earth E by the the rigid arm ES. Simultaneously, the planet Mars, M, is carried
westward about S by the steady rotation of the arm SM. Since ES rotates more
rapidly than SM, the net motion of Mars is eastward except during the brief
period when SM crosses over ES. In the second diagram (b) the same arms are
shown rotating about the fixed sun S. The relative PQsitionsof E, S, and M are the
same as those in (a), and they will stay the same while the arms in the two
diagrams rotate. Notice particularly that in (b) the angle ESM must decrease as
it does in (a) because ES rotates about the sun more rapidly than SM.

The Tychonic system has incongruities all its own: most of the
planets are badly off center; the geometric center of the universe is no
longer the center for most of the celestial motions; and it is difficult
to imagine any physical mechanism that could produce planetary
motions even approximately like Brahe's. Therefore the Tychonic sys-
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tem did not convert those few Neoplatonic astronomers, like Kepler,
who had been attracted to Copernicus' system by its great symmetry.
But it did convert most technically proficient non-Copernican astrono-
mers of the day, because it provided an escape from a widely felt
dilemma: it retained the mathematical advantages of Copernicus'
system without the physical, cosmological, and theological drawbacks.
That is the real importance of the Tychonic system. It was an almost
perfect 'compromise, and in retrospect the system seems to owe its
existence to the felt need for such a compromise. The Tychonic system,
to which almost all the more erudite seventeenth-century Ptolemaic
astronomers retreated, appears to be an immediate by-product of the
De Revolutionibus.

Brahe himself would have denied this. He proclaimed that he had
taken nothing in his system from Copernicus. But he can scarcely
have been conscious of the pressures at work on him and his contem-
poraries. Certainly he knew both Ptolemaic and Copernican astronomy
thorougWy before he thought of his own system, and he was clearly
aware in advance of the predicament that his own system was to re-
solve. The immediate success of the system is one index of the strength
and prevalence of the need. That two other astronomers disputed
Brahe's priority and claimed to have worked out similar compromise
solutions for themselves provides additional evidence for the role of
the De Revolutionibus and the resulting climate of astronomical opin-
ion in the genesis of the Tychonic systeJ;D.Brahe and his system pro-
vide the first illustration of one of the major generalizations that closed
the last chapter: the De Revolutionibus changed the state of astronomy
by posing new problems for all astronomers.

Brahe's criticisms of Copernicus and his compromise solution of
the problem of the planets show that, like most astronomers of his
day, he was unable to break with traditional patterns of thought about
the earth's motion. Among Copernicus' successors Brahe is one of the
immense body of conservatives. But the effect of his work was not
conservative. On the contrary, both his system and his observations
forced his successors to repudiate important aspects of the Aristotelian-
Ptolemaic universe and thus drove them gradually toward the Co-
pernican camp. In the first place, Brahe's system helped to familiarize
astronomers with the mathematical problems of Copernican astronomy,
for geometrically the Tychonic and Copernican systems were identical.
More important, Brahe's system, abetted by his observations of comets,
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to be discussed below, forced his followers to abandon the crystalline
spheres which, in the past, had carried the planets about their orbits.
In the Tychonic system, as indicated by Figure 37, the orbit of Mars
intersects the orbit of the sun. Both Mars and the sun cannot, there-

fore, be embedded in spheres that carry them about, for the two
spheres would have to penetrate and move through each other at all
times. Similarly, the sun's sphere passes through the spheres of Mer-
cury and Venus. Abandoning the crystalline spheres does not make
a man a Copernican; Copernicus himself had utilized spheres to ac-
count for the planetary motions. But the spheres had, in one of a
number of modifications, been an essential ingredient of the Aristo-
telian cosmological tradition which was the principal barrier to the
success of Copernicanism. Any break with the tradition worked
for the Copernicans, and the Tychonic system, for all its traditional
elements, was an important break.

Brahe's skillful observations were even more important than his
system in leading his contemporaries toward a new cosmology. They
provided the essential basis for the work of Kepler, who converted
Copernicus' innovation into the first really adequate solution of the
problem of the planets. And even before they were used to revise
Copernicus' system, the new data collected by Brahe suggested the
necessity of another major departure from classical cosmology - they
raised questions about the immutability of the heavens. Late in 1572,
when Brahe was at the beginning of his career in astronomy, a new
celestial body appeared in the constellation Cassiopeia, directly across
the pole from the Big Dipper. When first observed it was very brilliant,
as clear as Venus at its greatest brightness; during the next eighteen
months the new occupant of the heavens grew gradually dimmer; and
finally it vanished altogether early in 1574. From the start the new
visitor drew the interest of scientists and nonscientists throughout
Europe. It could not be a comet, the only sort of celestial apparition
widely recognized by astronomers and astrologers, for it had no tail,
and it always appeared in the same position against the sphere of the
stars. Clearly it was a portent; astrological activity multiplied; and
astronomers everywhere devoted their observations and their writings
to the "new star" in the heavens.

The word "star" is the key to the astronomical and cosmological
significance of the new phenomenon. If it were a star, then the im-
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mutable heavens had changed, and the basic contrast between the
superlunary region and the corruptible earth was in question. If it
were a star, the earth might more easily be conceived as a planet, for
the transitory character of terrestrial affairs would now have been
discovered in the heavens as well. Brahe and the best of his contem-

poraries did conclude that the visitor was a star. Observations like
the one illustrated in Figure 39 indicated that it could not be located

SPHERE
OFSTARS

Figure 39. Diurnal parallax of a body below the stalS. If S is between the
earth and the sphere of the stars, then it should appear at different positions
against the background of stars when observed by terrestrial observers at 0 and 0'.
Two observers are not required. The eastward rotation of the earth (or the
equivalent westward rotation of the observed body and the stellar sphere) carries
an observer from 0 to 0' in six hours; as a result of the rotation the body S appealS
to change its position continually, returning to its starting point among the stars
after twenty-four hours. If S were as close as the moon, its apparent displacement
during six hours would be very nearly 10. Bodies farther from the earth show less
displacement.

With modem instruments the technique illustrated above is useful in determin-
ing the distances to the moon and planets, but naked-eye observations are not
accurate enough for this application. The large size of the moon and its rapid
orbital motion disguise the parallactic effect. The planets are too far away.

below the sphere of the moon or even close to the sublunary region.
Probably it was among the stars, for it was observed to move with
them. Another cause for cosmological upheaval had been discovered.

. The sixteenth-century discovery of the mutability of the heavens
might have been relatively ineffectual if the only evidence of super-
lunary change had been drawn from the new star, or nova, of 1572.
It was a transient phenomenon; those who chose to reject Brahe's
data could not be refuted; by the time the .data were published the
star had disappeared; and'some less careful observers could always
be discovered who had observed a parallax sufficient to place the nova
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below the moon. But fortunately additional and continuing evidence
of superlunary change was provided by comets which Brahe observed
carefully in 1577, 1580, 1585, 1590, 1593, and 1596. Once again no
measurable parallax was observed, and the comets too were therefore
located beyond the moon's sphere where they moved through the
region formerly filled by the crystalline spheres.

Like the observations of the nova, Brahe's discussions of comets

failed to convince all of his contemporaries. During the first decades
of the seventeenth century Brahe was frequently attacked, occasionally
with the same bitterness displayed toward Copernicus, by those who
believed that other data proved comets and novas to be sublunary
phenomena and that the inviolability of the heavens could therefore
be preserved. But Brahe did convince a large number of astronomers
of a basic flaw in the Aristotelian world view, and, more important,
he provided a mode of argument by which skeptics could continuously
check his conclusions. Comets bright enough to be seen with the naked
eye appear every few years. After their superlunary character had
been deduced from observation and then widely debated, the evi-
dence that comets provided for the mutability of the heavens could
not indefinitely be ignored or distorted. Once again the Copernicans
were the gainers.

Somehow, in the century after Copernicus' death, all novelties of
astronomical observation and theory, whether or not provided by
Copernicans, turned themselves into evidence for the Copernican
theory. That theory, we should say, was proving its fruitfulness. But,
at least in the case of comets and novas, the proof is very strange, for
the observations of comets and novas have nothing whatsoever to do
with the earth's motion. They could have been made and interpreted
by a Ptolemaic astronomer just as readily as by a Copernican. They
are not, in any direct sense, by-products of the De Revolutionibus,
as the Tychonic system was.

But neither can they be quite independent of the De Revolu-
tionibus or at least of the climate of opinion within which it was
created. Comets had been seen frequently before the last decades of
the sixteenth century. New stars, though they appear less frequently
to the naked eye than comets, must also have been occasionally ac-
cessible to observers before Brahe's time; one more appeared in the
year before his death and a third in 1604. Even Brahe's fine instru-
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ments were not required to discover the superlunary character of
novas and comets; a parallactic shift of 10 could have been measured
without those instruments, and a number of Brahe's contemporaries
did independently conclude that comets were superlunary using
instruments that had been known for centuries. The Copernican
Maestlin needed only a piece of thread to decide that the nova of 1572
was beyond the moon. In short, the observations with which Brahe
and his contemporaries speeded the downfall of traditional cosmology
and the rise of Copernicanism could have been made at any time
since remote antiquity. The phenomena and the requisite instruments
had been available for two millenniums before Brahe's birth, but the

observations were .not made or, if made, were not widely interpreted.
During the last half of the sixteenth century age-old phenomena
rapidly changed their meaning and significance. Those changes seem
incomprehensible without reference to the new climate of scientific
thought, one of whose first outstanding representatives is Copernicus.
As suggested at the end of the last chapter, the De Revolutionibus
marked a turning point, and there was to be no turning back.

Johannes Kepler

Brahe's work indicates that after 1543 even the opponents
of Copernicanism, at least the ablest and most honest ones, could
scarcely help promoting major reforms in astronomy and cosmology.
Whether or not they agreed with Copernicus, he had changed their
field. But the work of an anti-Copernican like Brahe does not show
the extent of those changes. A better index of the novel problems that
accrued to astronomy after Copernicus' death is provided by the re-
search of Brahe's most famous colleague, Johannes Kepler (1571-
1630). Kepler was a lifelong Copernican. He seems first to have been
converted to the system by Maestlin when he was a student at the
Protestant university of Tiibingen, and his faith in it never wavered
after his student days. Throughout his life he referred in the rhapsodic
tones characteristic of Renaissance Neoplatonism to the suitability
of the role that Copernicus had attributed to the sun. His first im-
portant book, the Cosmographical Mystery, published in 1596, opened
with a lengthy defense of the Copernican system, emphasizing all
those arguments from harmony that we discussed in Chapter 5 and
adding many new ones besides: Copernicus' proposal explains why
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Mars's epicycle had been so much larger than Jupiter's and Jupiter's
than Saturn's; sun-centered astronomy shows why, of all the celestial
wanderers, only the sun and moon fail to retrogress; and so on and on.
Kepler's arguments are the same as Copernicus', though more numer-
ous, but Kepler, in contrast to Copernicus, develops the arguments
at length and with detailed diagrams. For the first time the full force
of the mathematical arguments for the new astronomy was demon-
strated.

But though Kepler was full of praise for the conception of a sun-
centered planetary system, he was quite critical of the particular
mathematical system that Copernicus had developed. Again and again
Kepler's writings emphasized that Copernicus had never recognized
his own riches and that after the first bold step, the transposition of
the sun and earth, he had stayed too close to Ptolemy in developing
the details of his system. Kepler was acutely and uncomfortably aware
of the incongruous archaic residues in the De Revolutionibus, and
he took it upon himself to eliminate them by exploiting fully the earth's
new status as a planet governed, like the other planets, by the sun.

Copernicus had not quite succeeded in treating the earth as just
another planet in a sun-centered system. Unlike the qualitative sketch
in the First Book of the De Revolutionibus, the mathematical account

of the planetary system developed in the later books attributed several
special functions to the earth. For example, in the Ptolemaic system
the planes of all planetary orbits had been constructed so that they
intersected at the center of the earth, and Copernicus preserved this
terrestrial function in a new form by drawing all orbital planes so
that they intersected at the center of the earth's orbit. Kepler insisted
that, since the sun governed the planets and the earth had no unique
status, the planes of the orbits must intersect in the sun. By redesign-
ing the Copernican system accordingly he made the first significant
progress since Ptolemy in accounting for the north and south devia-
tions of the planets from the ecliptic. Kepler had improved Coper-
nicus' mathematical system by applying strict Copernicanism to it.

A similar insistence upon the parity of the planets enabled Kepler
to eliminate a number of pseudo problems that had distorted Coper-
nicus' work. Copernicus had, for example, believed that the eccen-
tricities of Mercury and Venus were slowly changing, and he had
added circles to his system to account for the variation. Kepler showed
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that the apparent change was due only to an inconsistency in Coper-
nicus' definition of eccentricity. In the De Revolutionibus the eccen-
tricity of the earth's orbit was measured from the sun (it is the distance
SOE in Figure 34a, p. 169) while the eccentricities of all other orbits
were measured from the center of the earth's orbit (Mars's eccentric-
ity is OEOM in Figure 34b). Kepler insisted that all planetary eccen-
tricities must, in a Copernican universe, be computed in the same way
and from the sun. When the new method was incorporated in his
system, several of the apparent variations of eccentricity vanished,
and the number of circles required in computation was reduced.

Each of these examples shows Kepler striving to adapt Copernicus'
overly Ptolemaic mathematical techniques to the Copernican vision
of a sun-dominated universe, and it was by continuing this effort that
Kepler finally resolved the problem of the planets, transforming
Copernicus' cumbersome system into a supremely simple and accurate
technique for computing planetary position. His most essential dis-
coveries were made while studying the motion of Mars, a planet whose
eccentric orbit and proximity to the earth produce irregularities that
had always challenged the ingenuity of mathematical astronomers.
Ptolemy had been unable to account for its motion as satisfactorily as
for that of the other planets, and Copernicus had not improved on
Ptolemy. Brahe had attempted a new solution, undertaking a long
series of observations specially for the purpose, but surrendering the
problem as he encountered its full difficulties. Kepler, who had worked
with Brahe during the last years of Brahe's life, inherited the new
observations and, in the years after Brahe's death, took up the ~roblem
himself.

It was an immense labor which occupied much of Kepler's time
for almost ten years. Two orbits had to be worked out: the orbit of
Mars itself and the orbit of the earth from which Mars is observed.

Again and again Kepler was forced to change the combination of
circles used in computing these orbits. System after system was tried
and rejected because it failed to conform to Brahe's brilliant observa-
tions. All of the intermediate solutions were better than the systems
of Ptolemy and of Copernicus; some gave errors no larger than 8' of
are, well withip. the limits of ancient observation. Most of the systems
that Kepler discarded would have satisfied all earlier mathematical
astronomers. But they had lived before Brahe, whose data were ac-
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curate to 4' of. arc. To us, Kepler said, Divine goodness has given a
most diligent observer in Tycho Brahe, and it is therefore right that
we should with a grateful mind make use of this gift to find the true
celestial motions.

A long series of unsuccessful trials forced Kepler to conclude that
no system based upon compounded circles would solve the problem.
Some other geometric figure must, he thought, contain the key. He
tried various sorts of ovals, but none eliminated the discrepancies
between his tentative theory and observation. Then, by chance, he
noticed that the discrepancies themselves varied in a familiar mathe-
matical fashion, and investigating this regularity he discovered that
th€;Joryand observation could be reconciled if the planets moved in
elliptical orbits with variable speeds governed by a simple law which
he also specified. These are the results that Kepler announced in On
the Motion of Mars, first published at Prague in 1609. A mathematical
technique simpler than any employed since Apollonius and Hippar-
chus yielded predictions far more accurate than any that had ever been
made before. The problem of the planets had at last been solved, and
it was solved in a Copernican universe.

The two laws that constitute Kepler's (and our) final solution of
the problem of the planets are described in detail in Figure 40. The
planets move in simple elliptical paths, and the sun occupies one of
the two foci of each elliptical orbit - that is Kepler's First Law. His

Second Law follows immediately, completing the description em-
bodied in the First - the orbital speed of each planet varies in such
a way that a line joining the planet to the sun sweeps through equal
areas of the ellipse in equal intervals of time. When ellipses are sub-
stituted for the basic circular orbits common to Ptolemy's and Coper-
nicus' astronomy and when the law of equal areas is substituted for
the law of uniform motion about a point at or near the center, all
need for eccentrics, epicycles, equants, and other ad hoc devices
vanishes. For the first time a single uncompounded geometric curve
and a single speed law are sufficient for predictions of planetary
position, and for the first time the predictions are as accurate as the
observations.

The Copernican astronomical system inherited by modern science
is, therefore, a joint product of Kepler and Copernicus. Kepler's system
of six ellipses made sun-centered astronomy work, displaying simul-
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taneously the economy and the fruitfulness implicit in Copernicus'
innovation. We must try to discover what was required for this transi-
tion of the Copernican system to its modem, Keplerian, fonn. Two of
the prerequisites of Kepler's work are already apparent. He had to be
a convinced Copernican, a man who would begin his search for more
adequate orbits by treating the earth as a mere planet and who would
construct the planes of all planetary orbits through the center of the
sun. In addition, he needed Brahe's data. The data used by Copernicus
and his European predecessors were too infected with errors to be
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Figure 40. Kepler's first two Laws. Diagrams (a) and (b) define the ellipse,
the geometric curve in which all planets that obey Kepler's First Law must move.
In (a) the ellipse is shown as the closed curve in which a plane intersects a
circular cone. When the plane is perpendicular to the axis of the cone, the inter-
section is a circle, a special case of the ellipse. As the plane is tilted, the curve of
intersection is elongated into more typically elliptical patterns.

A more modern and somewhat more useful definition of the ellipse is given in
diagram (b). If two ends of a slack string are attached to two points F1 and F.
in a plane, and if a pencil P is inserted into the slack and then moved so that it
just keeps the string taut at all times, the point of the pencil will generate an
ellipse. Changing the length of the string or moving the foci F1 and F. together
or apart alters the shape of the ellipse in the same way as a change in the tilt of
the plane in diagram (a). Most planetary orbits are very nearly circular, and the
foci of the corresponding ellipses are therefore quite close together.

Diagram (c) illustrates Kepler's Se(.'OndLaw, which governs orbital speed.
The sun is at one focus of the ellipse, as required by the First Law, and its center
is joined by straight lines to a number of planetary positions P and p'. arranged
so that each of the three shaded sectors SPP' has the same area. The Second Law
states that, since each of these areas is the same, the planet must move through
each of the corresponding arcs PP' in equal times. When near the sun, the planet
must move relatively quickly so that the short line SP will sweep out the same area
per unit time as is swept out by the longer line SP when the planet is moving
more slowly farther from the sun.
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explained by any set of simple orbits, and even if freed from error
they would not have sufficed. Observations less precise than Brahe's
could have been explained, as Kepler himself showed, by a classical
system of compounded c¥cles. The process by which Kepler arrived
at his famous Laws depends, however, upon more than the avail-
ability of accurate data and a prior commitment to the planetary
earth. Kepler was an ardent Neoplatonist. He believed that mathe-
matically simple laws are the basis of all natural phenomena and that
the sun is the physical cause of all celestial motions. Both his most.
lasting and his most evanescent contributions to astronomy display
these two aspects of his frequently mystical Neoplatonic faith.

In a passage quoted at the end of Chapter 4 Kepler described the
sun as the body "who alone appears, by virtue of his dignity and
power, suited. . . [to move the planets in their orbits], and worthy
to become the home of God himself, not to say the first mover." This
conviction, together with certain intrinsic incongruities discussed
above, was his reason for rejecting the Tychonic system. It also played
an immensely important role in his own research, particularly in his
derivation of the Second Law upon which the First depends. In its
origin the Second Law is independent of any but the crudest sort of
observation. It arises rather from Kepler's physical intuition that the
planets are pushed around their orbits by rays of a moving force, the
anima matrix, which emanates from the sun. These'rays must, Kepler
believed, be restricted to the plane of the ecliptic, in or near which
all the planets moved. Therefore the number of rays that impinged on
a planet and the corresponding force that drove the planet around the
sun would decrease as the distance between the planet and the sun
increased. At twice the distance from the sun half as many rays of the
anima matrix would fall on a planet (Figure 41a), and the velocity
of the planet in its orbit would, in consequence, be half of its orbital
velocity at its original distance from the sun. A planet, P, moving about
the sun, S, on an eccentric circle (Figure 41b) or some other closed
curve must move at a speed inversely proportional to SP. The speed
will be greatest when the planet is at the perihelion, p, closest to the
sun, and least at the aphelion, a, where the planet is farthest from the
sun. As the planet moves around the orbit, its speed will vary con-
tinuallv between these extremes..I

Long before he began to work on elliptical orbits or stated the law
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of areas in its familiar modern form, Kepler had worked out this
inverse-distance speed law to replace both the ancient law of uniform
circular motion and the Ptolemaic variant which pennitted uniform
motion with respect to an equant point. This'early speed law was very
much "pulled from a hat" by a strange intuition - one that was rapidly
discarded by his successors - of the forces that must govern a sun-
dominated universe. Furthermore, this early form is not quite correct.
The later law of areas, Kepler's so-called Second Law, is not quite
equivalent to the inverse-distance law, and the law of areas gives
somewhat better results. But when used to compute planetary position
the two forms of the speed law lead to almost the same predictions.
Kepler mistakenly thought the two equivalent in principle and used
them interchangeably throughout his life. For all its visionary over-
tones the early Neoplatonic speed law proved fundamental in Kepler's
most fruitful research.

p 0

(0) ( b )

Figure 41. Kepler's earliest speed law. Diagram (a), which shows typical
rays of the anima motrix radiating from the sun, illustrates the physical theory
from which Kepler derived the law. Diagram (b) shows how the law could be
applied to a planet moving on an eccentric circle.

Unlike his derivation of the speed law, Kepler's work on elliptical
orbits was completely dependent upon the most painstaking and
exhaustive study of the best available astronomical observations.
Trial orbit after trial orbit had to be abandoned because, after labori-

ous computation, it did not quite match Brahe's data. Kepler's scrupu-
lous attempt to fit his orbits to objective data is often cited as an early
example of the- scientific method at its best. Yet even the law of
elliptical orbits, Kepler's First Law, was not derived from observation
and computation alone. Unless the planetary orbits are assumed to
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be precisely reentrant (as they were after Kepler's work but not be-
fore), a speed law is required to compute orbital shape from naked-
eye data. When analyzing Brahe's observations, Kepler made constant
use of his earlier Neoplatonic guess.

The interrelation of orbit, speed law, and observation was obscured
in our earlier discussions of astronomical theory, because ancient and
medieval astronomers chose a simple speed law in advance. Before
Kepler astronomers assumed that each of the compounded circles
which moved a planet around its orbit must rotate uniformly with
respect to a point at or near its center. Without some such assump-
tion they could not have begun the elaboration of orbits to fit observa-
tions, for in the absence of a speed law the specification of an orbit
tells little or nothing about where a planet will appear among the
stars at a particular time. Neither speed law nor orbit can be inde-
pendently derived from or checked against observation. Therefore,
when Kepler rejected the ancient law of uniform motion, he had to
replace it or else abandon planetary computations entirely. In fact,
he rejected the ancient law only after (and probably because) he
had developed a law of his own"":'a law that his Neoplatonic intuition
told him was better suited than its ancient counterpart to govern
celestial motions in a sun-dominated universe.

Kepler's derivation of the inverse-distance law displays his belief
in mathematical harmonies as well as his faith in the causal role of

the sun. Having developed the conception of the anima motrix Kepler
insisted that it must operate in the simplest way compatible with crude
observation. He knew, for example, that planets move fastest at peri-
helion, but he had few other data, none of them quantitative, on which
to base an inverse-distance law. But Kepler's belief in number har-
monies and the role of this belief in his work is more forcefully ex-
hibited in another one of the laws that modern astronomy inherits
from him. This is Kepler's so-called Third Law, announced during
1619 in the Harmonies of the World.

The Third Law was a new sort of astronomical law. Like their

ancient and medieval counterparts the First and Second Laws govern
only the motions of individual planets in their individual orbits. The
Third Law, in contrast, established a relation between the speeds of
planets in different orbits. It states that if Tl and T2 are the periods
that two planets require to complete their respective orbits once, and
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if Rl and R2 are the average distances between the corresponding
planets and the sun, then the ratio of the squares of the orbital periods
is equal to the ratio of the cubes of the average distances from the
sun, or (Tl / T2)2 = (Rl / R2)3. This is a fascinating law, for it points
to a regularity never before perceived in the planetary system. But, at
least in Kepler's day, that was all it did. The Third Law did not, in
itself, change the theory of the planets, and it did not permit astrono-
mers to compute any quantities that were previously unknown. The
sizes and the periods associated with each planetary orbit were avail-
able in advance.

But though it had little immediate practical use, the Third Law is
just the sort of law that most fascinated Kepler throughout his career.
He was a mathematical Neoplatonist or Neopythagorean who be-
lieved that all of nature exemplified simple mathematical regularities
which it was the scientists' task to discover. To Kepler and others of
his turn of mind a simple mathematical regularity was itself an ex-
planation. To him the Third Law in and of itself explained why the
planetary orbits had been laid out by God in the particular way that
they had, and that sort of explanation, derived from mathematical
harmony, is what Kepler continually sought in the heavens. He pro-
pounded a number of other laws of the same kind, laws which we
have since abandoned because, though harmonious, they do not fit
observation well enough to seem significant. But Kepler was not so
selective. He thought that he had discovered and demonstrated a
large number of these mathematical regularities, and they were his
favorite astronomical laws.

In Kepler's first major work, the Cosmographical Mystery, he
argued that both the number of the planets and the size of their orbits
could be understood in terms of the relation between the planetary
spheres and the five regular or "cosmic" solids. These are the solids
shown in Figure 42a, and they have the unique characteristic that all
of the faces of each solid are identical and that only equilateral figures
are used for faces. It had been shown in antiquity that there could
be only five such solids: cube, tetrahedron, dodecahedron, icosahe-
dron, and octahedron. Kepler proclaimed that if the sphere of Saturn
were circumscribed about the cube within which Jupiter's sphere was
inscribed, and if the tetrahedron were placed just inside Jupiter's
sphere with Mars's sphere inscribed in it, and so on for the three other
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solids and three other spheres, then the relative dimensions of all the

spheres would be just those that Copernicus had determined by
measurement. The construction is shown in Figure 42b. If it is to be
used, there can be only six planets, corresponding to the five regular
solids, and when it is used the permissible relative dimensions of the

@4@~.
(a)

(b)
. Figure 42. Kepler's application of the five regular solids. Diagram (a) shows

the solids themselves. From left to right they are: cube, tetrahedron, dodecahedron,
icosahedron, and octahedron. Their order is the one that Kepler developed to ac-
count for the sizes of the planetary spheres. Diagram (b) shows the solids in this
application. Saturn's sphere is circumscribed about the cube, and Jupiter's sphere
is inscribed in it. The tetrahedron is inscribed in Jupiter's sphere, and so on.

planetary spheres are determined. That, said Kepler, is why there are
only six planets and why they are arranged as they are. God's nature
is mathematical. ,

Kepler's use of the regular solids was not simply a youthful ex-
travagance, or if it was, he never grew up. A modified form of the
same law appeared twenty years later in his Harmonies of the World,
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the same book that propounded the Third Law. Also in that book
Kepler elaborated a new set of Neoplatonic regularities which related
the maximum and minimum orbital speeds of the planets to the con-
cordant intervals of the musical scale. Today this intense faith in
number harmonies seems strange, but that is at least partly because
today scientists are prepared to find their harmonies more abstruse.
Kepler's application of the faith in harmonies may seem naive, but
the faith itself is not essentially different from that motivating bits of
the best contemporary research. Certainly the scientific attitude
demonstrated in those of Kepler's '1aws" which we have now discarded
is not distinguishable from the attitude which drove him to the three
Laws that we now retain. Both sets, the "laws" and the Laws, arise
from the same renewed faith in the existence of mathematical harmony
that had so large a role in driving Copernicus to break with the astro-
nomical tradition and in persuading him that the earth was, indeed,
in motion. But in Kepler's work, and particularly in the parts of it
that we have now discarded, the Neoplatonic drive to discover the
hidden mathematical harmonies embedded in nature by the Divine
Spirit are illustrated in a purer and more distinct form.

Galileo Galilei

Kepler solved the problem of the planets. Ultimately his ver-
sion of Copernicus' proposal would almost certainly have converted
all astronomers to Copernicanism, particularly after 1627 when Kepler
issued the Rudolphine Tables, derived from his new theory and
clearly superior to all the astronomical tables in use before. The story
of the astronomical components of the Copernican Revolution might
therefore end with the gradual acceptance of Kepler's work because
that work contains all the elements required to make the Revolution
in astronomy endure. But, in fact, the astronomical components of
the story do not end there. In 1609 the Italian scientist Galileo Galilei
(1564-1642) viewed the heavens through a telescope for the first time,
and as a result contributed to astronomy the first qualitatively new
sort of data that it had acquired since antiquity. Galileo's telescope
changed the terms of the riddle that the heavens presented to astrono-
mers, and it made the riddle vastly easier to solve, for in Galileo's
hands the telescope disclosed countless evidences for Copernicanism.
But Galileo's new statement of the riddle was not formulated until




