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Introduction

Richard Westphal’s monumental biography Never at Rest was the product of a lifetime’s
study of Isaac Newton’s lite and work. In the preface. he writes:

The more I have studied him, the more Newton has receded from me. It has been my privilege at
various times to know a number of brilliant men, men whom | acknowledge without hesitation to be
my intellectual superiors. I have never. however, met one against whom I was unwilling to measure
myself so that it seemed reasonable to say that T was half as able as the person in guestion, or a third
or a fourth, but in every case a finite fraction. The end result of my study of Newton has served to
convince me that with him there is no measure. He has become for me wholly other, one of the tiny
handful of supreme geniuses who have shaped the categories of human intellect, a man not finally
reducible to the criteria by which we comprehend our fellow beings.'

In the next paragraph, he writes:

Had I known, when in youthful self-confidence I committed myself to the task, that I would end up
in similar self-doubt, surely I would never have set out.'

Newton’s impact upon science is so all pervasive that it is worthwhile filling in some of
the background to his character and extraordinary achievements. The chronology which
follows is that adopted in the Introduction of the volume Ler Newron Be.?

Lincolnshire 1642-61

Newton was born in the hamlet of Woolsthorpe near Grantham on Christmas day 1642
(according to the old style Julian calendar). Newtons father was a successful farmer, who
died three months before Newton’s birth. When Isaac Newton was three years old, his mother
married the Reverend Barnabas Smith and moved into his house, leaving Isaac behind to
be brought up by his grandmother. Isaac hated his step-father. as is revealed by this entry
in the list of sins he had committed up to the age of 19:

Threatening my father and mother Smith to burn them and the house over them.

It has been argued that this separation from his mother at an carly age was a cause of
his ‘suspicious. neurotic, tortured personality’.* He was sent to the Free Grammar School
at Grantham where he lodged with an apothecary. It was probably in these lodgings that
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he was introduced to chemistry and alchemy, which remained a lifelong passion. Newton
himself claimed that he invented toys and did experiments as a teenager. He is reported
to have constructed a model of a mill powered by a mouse, clocks, ‘lanthorns’ and fiery
kites, which he flew to frighten the neighbours. He was already a loner who did not get on
particularly well with his schoolmates. Following his school education, it was decided that
he should return to the Free Grammar School at Grantham to prepare for entry to his uncle’s
old college, Trinity College, Cambridge.

Cambridge 1661-5

To begin with, Newton was a ‘subsidiser’, meaning that he earned his keep by serving the
fellows and rich students at Trinity College. He took courses in Aristotelian philosophy,
logic. ethics and rhetoric. His notebooks record that he was reading other subjects privately,
the works of Thomas Hobbes, Henry More and René Descartes, as well as those of Kepler
and Galileo. It became apparent to him that he was weak in mathematics and so he started to
work ‘ferociously” at the subject. By the end of this period, he had mastered whole areas of
mathematics. He also continued to carry out experiments in a wide range of different topics.
In 1664, he was elected a scholar of Trinity College, ensuring him a further four years of
study without domestic duties. In 1665, he took his B.A. degree, and then the effects of the
Great Plague began to spread north to Cambridge. The University was closed and Newton
returned to his home at Woolsthorpe.

Lincolnshire 1665-7

During the next two years., Newton’s burst of creative scientific activity must be one of
the most remarkable ever recorded. The only comparable feat of which I am aware is the
achievement of Albert Einstein in 1905. Over 50 years later, Newton wrote:

In the beginning of 1665, I found the method of approximating series and the rule for reducing any
dignity (power) of any binomial into such a series. The same year in May, | found the method of
tangents of Gregory and Slusius and in November had the direct method of fluxions and the next year
in January had the theory of colours and in May following I had entrance into the inverse method
of fluxions. And in the same vear | began to think of gravity extending to the orbit of the Moon and
(having found out how to estimate the force with which a globe revolving within a sphere presses the
surface of the sphere) from Kepler’s rule of the periodical times of the planets being in sesquialternate
proportion® of their distance from the centres of their Orbs, 1 deduced that the forces which keep
the planets in their Orbs must [be] reciprocally as the squares of their distances from the centres about
which they revolve: and thereby compared the force requisite to keep the Moon in her orb with the
force of gravity at the surface of the Earth, and found them answer pretty nearly. All this was in the
two plague years 1665-6. For in those days I was in the prime of my age for invention and minded
mathematics and philosophy more than at any time since.’

Sesquialternate proportion means “to the power 3/2°,
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It is a quite astonishing list — Newton had laid the foundations of three quite separate
areas, In mathematics, he discovered the hinomial theorem and the differential and integral
calculus. In optics, he discovered the decomposition of light into its primary colours. He
began his unification of celestial mechanics with the theory of gravity, which was to lead
ultimately to his laws of motion and the theory of universal gravitation. Let us look into his
achievements in the fields of optics and of the law of gravity in more detail.

Optics

Newton was a skilled experimenter and undertook a number of optical experiments using
lenses and prisms while he was at Trinity College and at Woolsthorpe. Many investigators
had noted that when white light is passed through a prism all the colours of the rainbow
are produced. Descartes was the proponent of the generally accepted view that, when light
passes through a prism, it is modified by the material of the prism and so becomes coloured.

In 1666, Newton, in his own words, ‘applied myself to the grinding of Optick glasses
of other figures than spherical” and among these he produced a triangular glass prism ‘to
try therewith the celebrated Phaenomena of Colours’. Sunlight was passed through a tiny
hole onto the prism and, to Newton’s surprise. the coloured light produced by the prism
was of oblong form. This experiment led him to carry out his famous experimentum crucis,
illustrated in Figs.4.1(a), (b), the second picture showing Newton’s own drawing of the
experiment.

In this experiment, the coloured spectrum produced by the first prism was projected onto
a plane board and a small hole was cut in the board to allow only one of the colours to
pass through. A second prism was placed in the path of this second light beam, and Newton
discovered that there was no further decomposition of this beam into more colours. The
experiment was repeated for all the colours of the spectrum and consistently he found that
there was no further splitting up of the colours, contrary to the expectations of Déscartes”
theory. Newton concluded that:

Light itself is a Heterogeneous mixture of differently refrangible rays.®

The word refrangible is what we would now call refiacted. Newton had established that
white light is a superposition of all the colours of the rainbow and that, when white light is
passed through a prism, rays of different colour are deflected by different amounts.

This work was not presented in public until 1672, in a paper to the Royal Society. and
Newton immediately found himself'in the thick of a hot dispute. In addition to describing his
new results, he regarded them as evidence in favour of his view that light can be considered
to be made up of “corpuscles’. that is, of particles which travel from the source of light
to the eye. Newton did not have a satisfactory theory of ‘light corpuscles’, or why they
should be refracted in different ways by material media. His problems were exacerbated by
the fact that the experimentum crucis was difficult to reproduce. The ensuing unpleasant
debate with Huyghens and Hooke obscured the key result that white light is composed ol all
the colours of the spectrum.

This work led him to another important conclusion — that it is not possible to build a
large refracting telescope of the type pioneeered by Galileo, because white light is split
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Figure 4.1: (a) A schematic diagram showing the decomposition of white light into the colours of the
spectrum. On passing through the second prism. the colours are not split up into any further colours.
(b) Newton’s sketch of his experimentum crucis. (From C. Hakfoort, 1988, Let Newton Be: a New
Perspective on his Life and Works, eds. J. Fauvel, R. Flood, M. Shortland, and R. Wilson, p. 87, Oxford:
Oxford University Press. By kind permission of the Warden and Fellows, New College Oxford.)

up into its primary colours by a refracting lens and so different colours are focussed at
different positions on the optical axis of the telescope. the phenomenon known as chromaric
aberration. Because of this problem, Newton designed and built a new type of telescope, an
all-reflecting telescope, which would not suffer from chromatic aberration. He ground the
mirrors himself and constructed the mount for the telescope and mirrors. This configuration
is now called a “Newtonian® design and is shown in Fig.4.2(a). Figure4.2(h) shows a
contemporary drawing of Newton'’s telescope as well as a comparison of the magnifying
power of Newton's telescope with that of a refracting telescope, indicating the superiority
of Newton’s design. Nowadays, all large optical astronomical telescopes are reflectors, the
descendants of Newton’s invention.




4.4 Lincolnshire 1665-7 57

(a)
¥ X
’k n\ ¢
r a7
I
g1]¢
I
r hr
] by |d
z ._'. 4
(h)

Figure 4.2: (a) The optical layout of Newton’s reflecting telescope; abed is the mirror made of
speculum metal, ¢fg is a prism and & is a lens. (From LB. Cohen, 1970, Dictionary of Scientific
Biography, Vol. 11, p. 57, New York: Charles Scribner’s Sons () 1970-80. Reprinted by permission
of the Gale Group.) (b) Newton's reflecting telescape, as illustrated in the Philosophical Transactions
of the Royal Society, 1672. The two crowns show the improvement in magnification of Newton’s
telescope over the traditional refracting telescope, such as that used by Galileo. (From J. Fauvel,
R. Flood. M. Shortland and R. Wilson eds.. 1988, Ler Newton Be: a New Perspective on his Life and
Works, p. 16, Oxford: Oxford University Press.)
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These were great experimental achievements. but Newton had an almost pathological
dislike of writing up his work for publication. The systematic presentation of his optical
work in his book Opricks was only published in 1704, long after his discoveries and inven-
tions had been made.

The law of gravity

Newton’s most famous achievement of his years at Woolsthorpe was the discovery of the
law of gravity. The calculations carried out in 1665—6 were only the beginning of the story,
but they contained in essence the theory which was to appear in its full glory in his Principia
Marhematica of 1687, As Newton himself recounted, he was aware of Kepler’s third law of
planetary motion, which was deeply buried in Kepler's Harmony of the World. The volume
was in the Trinity College library and it is likely that Isaac Barrow, the Lucasian Professor
of Mathematics, drew Newton'’s attention to it.
In Newton’s own words.

the notion of gravitation [came to my mind] as I sat in contemplative mood [and] was occasioned by
the fall of an apple.”

Newton asked whether the force of gravity, which makes the apple fall to the ground. is
the same force which holds the Moon in its orbit about the Earth and the planets in their
orbits about the Sun. To answer this question, he needed to know how the force of gravity
varies with distance. He derived this relation from Kepler’s third law by a simple argument.
First, he needed an expression for centripetal acceleration, which he rederived for himself.
Nowadays, this formula can be derived by a simple geometrical argument using vectors.

Figure 4.3 shows the velocity vectors of a particle moving at constant speed |v| in a circle
with radius |r| attimes # and 1 + Ar. In the time Ar, the angle subtended by the radius vector
r changes by Af. The change in the velocity vector in At is given by the vector triangle
shown on the right. As Ar — 0, the vector Av continues to point towards the centre of the
circle and its magnitude is |v|Af. Therefore, the centripetal acceleration is of magnitude

|Av| _ [v]Ag |vf?
la| = —— = = |[vlo =
At At [r|
where @ is magnitude of the (constant) angular velocity of the particle. This is the famous
expression for the centripetal acceleration a of an object moving in a circle of radius r at
speed v.

In 1665, Newton was well aware of the fact that the orbits of the planets are actually
ellipses, and notcircles, but he assumed that it would be adequate to apply Keplers third
law to circular orbits, since the ellipticities of the orbits of the planets are generally very
small.

He also knew that accelerations are proportional to the forces which cause them and so
the force f which keeps a planet in its circular orbit must be proportional to its centripetal
acceleration v*/r, that is,

4.1)

o
o —; (4.2)
r
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Figure 4.3: A vector diagram illustrating the origin of centripetal acceleration.

but Kepler’s third law states that the period 7' of the planet’s orbit is proportional to p32,
The speed of a planet in its orbit is v = 277/ 7" and therefore

1

U X m. (43)
Now, we can substitute for v from (4.3) into (4.2) and so find
1
[ = (4.4)

This is the primitive form of Newton’s inverse square law of gravity — the force of gravity
decreases as the inverse square of the distance from the body.

This was the key result he was looking for — if gravity were truly universal then the
force which causes apples to fall to the ground should be of exactly the same nature
as the force which keeps the Moon in its orbit about the Earth. The only difference is
that the acceleration of the apple should be greater than that of the Moon, because the
Moon is 60 times further from the centre of the Earth than the apple. Thus, according to
the universal theory of gravity, the centripetal acceleration of the Moon should be only
1/60% = 1/3600 times the acceleration due to gravity on the surface of the Earth. Newton
had all the data he needed to make this comparison. Using modern numbers, the acceleration
due to gravity on the surface of the Earth is on average 9.80665 m s~2. The period of rev-
olution of the Moon about the Earth is 27.32 days and its mean distance from the Earth is
» = 384408 000 m. Putting these together, the mean speed of the Moon v is 1023 m s~
and its centripetal acceleration v?/ris2.72 x 107 m s~2. The ratio of this acceleration
to the local acceleration due to gravity is 9.80665/2.72 x 107% = 3600, exactly as
predicted.

Newton’s calculations did not give quite such good agreement, but were sufficiently
close to persuade him that the force which holds the Moon in its orbit about the Earth and
the planets in their orbits about the Sun, is of exactly the same type as the force which
causes the acceleration due to gravity on Earth. From this result, the general formula for
the gravitational attraction between any two bodies of masses M and M; follows:

. GM\ M,
e == (4.5)

2
P
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where G is the gravitational constant and r is the distance between the bodies. The force
acts along the line joining the two bodies and is always an attractive force.

This work was not published, because there were a number of steps in the calculation
which needed further elaboration.

(i) Kepler had shown that the orbits of the planets are ellipses and not circles — how did
that affect the calculation?

(ii) Newton was uncertain about the influence of the other bodies in the Solar System upon
each others” orbits.

(iii) He was unable 1o explain the details of the Moon’s motion about the Earth, which, as
we now know. is influenced by the fact that the Earth is not spherical.

(iv) Probably most important of all, there is a key assumption in the calculation, that all the
mass of the Earth can be located at its centre in working out the acceleration due to
gravity at its surface and its influence upon the Moon. The same assumption was made
for all the bodies in the solar system. In his calculations of 1665-6, Newton regarded
this step as an approximation. He was uncertain about its validity for objects close to
the surface of the Earth.

Newton laid this work aside until 1679,

Cambridge 1667-96

The University reopened in 1667 and Newton returned to Trinity College in the summer of
that year. He became a fellow of the college in the autumn of 1667 and two years later, at the
age of 26. he was elected Lucasian Professor of Mathematics, a position which he held for
the next 32 years. As Lucasian Professor, Newton’s duties were not heavy. He was required
to give at least one lecture per week in every term and to deposit his lectures, properly
written up, in the University Library. In the period 1670 to 1672, he deposited lectures on
optics, during 167383 lectures on arithmetic and algebra and in 1684-5 most of book I of
what was to become the Principia Mathematica. In 1687, the lectures were entitled “The
system of the world™ and this became part I1I of the Principia. There seems to be no record
of his lectures for 1686, nor from 1688 until he left Cambridge in 1696.

His lectures were not particularly successful. His assistant Humphrey Newton, who was
no relation, wrote of Newton during the years he was preparing the Principia:

He seldom left his chamber except at term time. when he read [his lectures] in the [Old S]chools as
being Lucasian Professor, where so few went to hear him, and fewer that understood him. that of times
he did, in a manner, for want of hearers. read to the walls. .. [when he lectured he] usually stayed
about half an hour; when he had no auditors, he commonly returned in a fourth part of that time or
less.”

The first of Newton’s publications appeared during this period. In late 1668. Nicholas
Mercator published his book Logarithmotechnica, in which he described some of the
techniques for the analysis of infinite series which Newton had already worked out in
greater generality. Newton set about writing up his mathematical work so that his priority
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could be established. He wrote hastily the work known as De Anralysi (On Analysis),
which Isaac Barrow was allowed to show to a London mathematician, Mr Collins. Newton
insisted, however, that the work remain anonymous. The results were communicated by
letter among British and continental mathematicians and so the work became widely
known.

Newton incorporated the most important parts of De Analysi into another manuscript,
Methodus Fluxionum et Serierum Infinitarum, the Method of Fluxions and Infinite Series,
which was not published until long afterwards in 1711 by William Jones. The manuscript
was. however. read by Leibniz in October 1676 when he was on a visit to London. Although
Leibniz scholars have established that he only copied out the sections on infinite series, this
incident was the source of the later bitter accusations that Leibniz had plagiarised Newton’s
discovery of the differential and integral calculus.

Newton was prompted to return to his rescarches on the laws of motion and gravity in
1679 by an interchange of letters with Robert Hooke. Hooke challenged Newton to work out
the curve followed by a particle falling in an inverse-square field of force, the law Newton
had derived 14 years earlier. This stimulated Newton to derive two crucial results. As noted
by Chandrasekhar in his remarkable commentary on the Principia,’

Newton’s interest in dynamics was revived sufficiently for him to realise for the first time the real
meaning of Kepler’s law of areas. And as he wrote, ‘1 found now that whatsoever was the law of force
which kept the Planets in their Orbs, the area described by a radius drawn from them to the Sun would
be proportional to the times in which they were described’; and he proved the two propositions that

all bodies circulating about a centre sweep out areas proportional to the time
and that

a body revolving in an ellipse ... the law of attraction directed to a focus of the ellipse

. is inversely as the square of the distance,

The first remarkable discovery, that Kepler’s second law, the law of'areas, is correct whatever
the nature of the force law, so long as it is a central force, is now recognised as a conse-
quence of the law of conservation of angular momentum. Chandrasekhar noted that: *The
resurrection of Kepler’s law of areas in 1679 was a triumphant breakthrough from which
the Principia was later to flow’. At this point, another dispute broke out with Hooke, who
claimed that he was the originator of the inverse square law of gravity. Newton violently
rejected this claim and would not communicate any of the results of his calculations to
Hooke, or to anyone else.

In 1684, Edmund Halley travelled to Cambridge to ask Newton precisely the same ques-
tion which had been posed by Hooke. Newton’s immediate response was that the orbit is an
ellipse, but the proof could not be found among his papers. In November 1684, Newton sent
the proof to Halley. Halley returned to Cambridge where he saw an incomplete manuscript
of Newton’s entitled De Motu Corporum in Gyrum, or On the Motion of Revolving Bodies,
which was eventually to be transformed into the first part of the Principia. With a great
deal of persuasion, Newton agreed to set about systematising all his researches on motion,
mechanics, dynamics and gravity.

Only in 1685, when he was working at white heat on the preparation of what was
to become his great treatise, the Philosophiae Naturalis Principia Mathematica, or the
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Principia for short, did he demonstrate that, for a spherically symmetric body, the
gravitational attraction can be found exactly by placing all its mass at its centre. In the words
of J.W.L. Glaisher, on the occasion of the bicentenary of the publication of the Principia,

No sooner had Newton proved this superb theorem — and we know from his own words that he had no
expectation of so beautiful a result till it emerged from his mathematical investigation — then all the
mechanism of the universe at once lay spread before him. . .. We can imagine the effect of this sudden
transition from approximation to exactitude in stimulating Newton’s mind to still greater effort.”?

Nowadays, this result is proved in a few lines using Gauss’s theorem in vector calculus
as applied to the inverse square law of gravity, but these techniques were not available
to Newton. It is not generally appreciated what a crucial step this calculation was in the
development of the Principia.

Humphrey Newton gives us a picture of Newton during the writing of the Principia.

(He) ate sparing (and often) forgot to eat at all. (He rarely dined) in the hall, except on some public
days (when he would appear) with shoes down at the heel, stockings untied, surplice on, and his
head scarcely combed. (He) seldom went to the Chapel (but very often) went to St. Mary’s Church,
especially in the forenoon.'!

The Principia is one of the greatest intellectual achievements of all time. The theory
of statics, mechanics and dynamics, as well as the law of gravity, are developed entirely
through mathematical relations and mechanistic interpretations of the physical origins of
the forces are excluded. In the very beginning, what we now call Newton s laws of motion are
set out in their definitive form — we will return to these in more detail in Chapter 7. Despite
the fact that Newton had developed his own version of the integral and differential calculus,
the Principia is written entirely in terms of geometrical arguments. Often these are difficult
to follow for the modern reader, largely because the geometrical arguments used are no
longer familiar to physicists. Chandrasekhar’s remarkable reconstruction of the arguments
in modern geometrical terms gives some impression of the methods which Newton must
have used. As an example of the economy of expression used by Newton in the Principia,
Fig. 4.4 shows a translation of the proof of the elliptical orbits under the influence of an
inverse square field of force. Comparison with Chandrasekhar’s much lengthier derivation
shows how terse Newton’s geometric proofs were.

Newton the alchemist

Throughout his time at Cambridge. Newton maintained a profound interest in alchemy and in
the interpretation of ancient and biblical texts. These aspects of his work tend to be regarded,
at best, as unfortunate aberrations, and yet they were of the greatest significance for Newton,

Newton studied alchemy with the same seriousness he devoted to his mathematics and
physics. Whereas his great contributions to the latter disciplines became public knowledge,
his alchemy remained very private, his papers containing over a million words on alchemical
topics. From the late 1660s to the mid 1690s, he carried out extensive chemical experiments
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PROPOSITION XI. PROBLEM VI

If @ body revolves in an ellipse; it is required to find the law of the
centripeial force tending to the foeus of the ellipse.

Let S be the focus of the ellipse. Draw SP cutting the diameter DK of
the ellipse in E, and the ordinate Qu in x; and complete the parallelogram
QxPR. It is evident that EP is equal to the greater semiaxis AC: for
drawing HI from the other focus H of the ellipse parallel to EC, because
CS, CH are equal, ES, EI will be also equal; so that EP is the half-sum
of PS. PI that is (because of the parallels HI, PR, and the equal angles
IPR, HPZ), of PS, PH, which taken together are equal to the whole axis
2AC. Draw QT perpendicular to SP, and putting L for the principal

latus rectum of the ellipse (or for lli(c“z ), we shall have
Fa

L-QR:L-Pyv=QR:Pyv=PE:PC=AC:PC,
also, L - Pv : Gu - Pv = L : Gv, and, Gv - Pv : Quv* = PC* : CD*.
By Cor. 11, Lem. vi1, when the points P and Q coincide, Quv? =Qx*, and
Qx? or Qu?:QT? =EP*:PF?=CA? : PF?, and (by Lem. x1) =CD?: CB”.
Multiplying together corresponding terms of the four proportions, and
simplifying, we shall have

L-QR:QT? =AC.L.PC?.CD?:PC GuCD?.CB? = 2PC:Gu,

since AC - L = 2BC2. But the points Q and P coinciding, 2PC and Gu
are equal. And therefore the quantities L - QR and QT?, proportional to

>
, and
R

these, will be also equal. Let those equals be multiplied by
SI_}EIQT‘,‘.

QR . .
Prop. vi) the centripetal force is inversely as L - SP*, that is, inversely as
the square of the distance SP.Q.E.L

L. - SP? will become equal to . And therefore (by Cor. 1and v,

Figure 4.4: A translation from the Latin of Newton’s proof that the orbits of the planets are ellipses
under the influence of an inverse square law field of gravity. (From 1. Roche. 1988, Let Newton Be:
a New Perspective on his Life and Works, eds. . Fauvel, R. Flood, M. Shortland and R. Wilson, p. 55,
Oxford: Oxford University Press. Reprinted by permission of Oxford University Press.)
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Figure 4.5: A seventeenth century engraving of the Great Gate and Chapel of Trinity College. The
small shed seen in the bay of the chapel closest to the wall of Great Court may have been Newton’s
chemical laboratory. (Engraving by David Loggan, from his Cantabrigia illustrated, Cambridge 1690.
Reprinted in J. Golinski, 1988, Let Newron Be: a New Perspective on his Life and Works, eds. J. Fauvel,
R.Flood, M. Shortland. and R. Wilson, p. 152, Oxford: Oxford University Press. Courtesy of the
Society of Antiquaries of London.)

in his laboratory at Trinity College. Figure4.5 is a contemporary engraving of Trinity
College: Newton’s rooms were on the first floor to the right of the Gatehouse. It has been
suggested that the shed which can be seen leaning against the Chapel outside the College was
Newton’s laboratory. He taught himself all the basic alchemical operations, including the
construction of his own furnaces. Humphrey Newton, his assistant from 16835 to 1690, wrote:

About six weeks at spring and six at the fall, the fire in the laboratory scarcely went out ... what his
aim might be, I was not able to penetrate into . . . Nothing extraordinary, as | can remember, happened
in making his experiments, which if there did . . . I could not in the least discern it.!?

The two Newtons kept the furnaces going continuously for six weeks at a time, taking
turns to tend them overnight.

From the late 1660s to the mid 1690s, Newton devoted a huge effort to systematising
everything he had read on chemistry and alchemy (Fig. 4.6). His first attempt to put some
order into his understanding was included in his /ndex Chemicus. or Chemical Dictionary.
of the late 1660s; it was followed over the next 25 years by successive versions. According
to Golinski."? the final index cites more than 100 authors and 150 works. There are over
5000 page references under 900 separate headings. In addition, Newton devoted a huge
effort to deciphering obscure allegorical descriptions of alchemical processes. It was part
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Figure 4.6: Newton’s list of alchemical symbols. (From J. Golinski, 1988, Ler Newfon Be: a New
Perspective on his Life and Works, eds. . Fauvel, R. Flood, M. Shortland. and R. Wilson), p. 155,
Oxford: Oxford University Press. With kind permission of the Provost, Fellows and Scholars of
King’s College, Cambridge.)

of the mystique of the alchemists that the fundamental truths should not be made known
to the unworthy or the vulgar, The ultimate example of this was Newton’s belief that the bib-
lical account of the creation was actually an allegorical description of alchemical processes.
In a manuscript note of the 1680s, Newton noted that

Just as the world was created from dark chaos through the bringing forth of the light and through
the separation of the airy firmament and of the waters from the Earth, so our work brings forth
the beginning out of black chaos and its first matter through the separation of the clements and the
illumination of matter.

What Newton was trying (o achieve is illuminated by a manuscript dating from the 1670s
entitled Of Narure'’s Obvious Laws and Processes in Vegetation. To quote Golinski,

Newton distinguished ‘vulgar chemistry’ from a more sublime interest in the processes of
vegetation ... ‘Nature’s actions are either vegetable or purely mechanical” he wrote. The imitation
of mechanical changes in nature would be commaon, or vulgar, chemistry, whereas the art of indueing
vegetation was ‘a more subtle, secret and noble way of working.’

Newton’s objective was no less than to isolate the essence of what gave rise to growth and
life itself. Such a discovery would make man like God and so had to be kept a secret from
the vulgar masses.

The Interpretation of ancient texts and the scriptures

Newton devoted almost as much effort to interpreting the works of the ancients and biblical
texts as he did to his alchemical studies. Newton convinced himself that all his great dis-
coveries had in fact been known to the ancient Greek philosophers. In 1692, Nicholas Fatio
de Duillier, Newton’s protegé during the period 1689-93, wrote to Christiaan Huyghens
that Newton had discovered that all the chief propositions of the Principia had been
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known to Pythagoras and Plato but that they had turned these discoveries into a ‘great
mystery’.

Newton believed that the ancients had kept this knowledge secret for the same rea-
son he kept his alchemical work secret. These truths were of such great significance that
they had to be preserved for those who could truly appreciate them. For this reason, the
Greeks had to disguise their deep understandings in a coded language of symbolism, which
only initiates such as Newton could penetrate.

Piyo Rattansi'® suggests that Newton’s objective was to give his great discoveries an
ancient and honourable lineage. The Principia Mathematica had been well received on the
continent as a text in mathematics, but not as physics. The continental physicists disliked the
introduction of the ‘unintelligible’ force of attraction, which had to be introduced to account
for the law of gravity. To them Newton’s ‘force of gravity” was a mystic force because they
could not envisage any physical mechanism for causing gravitational attraction — all other
physical forces could be explained by actions involving concrete bits of matter but what was
it that caused gravity to act across the Solar System? The continental scientists interpreted
the law of gravity as being the reintroduction of ‘occult causes’, which the whole of the
revolution in science had been bent upon eliminating. Newton was claiming as ancient an
authority for his discoveries as any branch of knowledge.

In addition, throughout his lifetime, he had a deep interest in the scriptures and their
interpretation. His prime interest centred upon the near East and how a proper interpretation
of the texts could be shown to predict retrospectively all the significant events of history. His
aim was to show that the seat of all knowledge began in Israel and from there it travelled to
Mesopotamia and Egypt. The results of these researches were published in two books, The
Chronology of the Ancient Kingdoms Amended and Observations upon the Prophecies of
Daniel and the Apocalypse of St John. The latter work runs for 323 pages and was published
in twelve editions between 1733 and 1922,

Rattansi puts Newton's studies of the biblical texts in another revealing light:

His biblical work was intended to vindicate the authority of the Bible against those Catholics who had
tried to show that only by supplementing it with the tradition of the universal church could it be made
authoritative. It served at the same time as a weapon against the free-thinkers who appealed to a purely
‘natural’ religion and thereby did away with the unique revelation enshrined in Christian religion. It
did so by demonstrating that history was continually shaped according to providential design which
could be shown, only after its fulfilment, to have been prefigured in the divine word."”

Later, he writes:

Newton followed the Protestant interpretation of Daniel’s visions and made the Roman church of later
times the kingdom of the Antichrist which would be overthrown before the final victory of Christ’s
kingdom.'s

Newton held the view that the scriptures had been deliberately corrupted in the fourth and
fifth centuries. This view was at odds with the tenets of the Church of England and, as a
fellow of Trinity College, he was expected to be a member of the Church. A major crisis
was narrowly avoided by the arrival of a royal decree, exempting the Lucasian Professor
from the necessity of taking holy orders.
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In 1693, Newton had a nervous breakdown. After his recovery, he lost interest in aca-
demic studies and, in 1696, left Cambridge to take up the post of Warden of the Mint in
London.

London 1696-1727

By the time Newton took up his position as Warden of the Mint, he was already recognised
as the greatest living English scientist. Although the position was normally recognised as
a sinecure, he devoted all his energies to the recoinage needed at that time to stabilise the
currency. He was also responsible for prosecuting forgers of the coin of the realm, an offence
which carried the death penalty. Apparently, Newton carried out this unpleasant aspect of
his responsibility ‘with grisly assiduity’. He was an effective manager and administrator
and in 1700 was appointed Master of the Mint.

In 1703, following the death of Hooke, Newton was elected President of the Royal
Society. He now held positions of great power, which he used to further his own interests.
Halley entered the service of the Mint in 1696 and in 1707 David Brewster was appointed
as general supervisor of the conversion of the Scottish coinage into British. Newton had
secured the Savillian chair of Astronomy at Oxford for David Gregory in 1692 as well as
the Savillian Chair of Geometry for Edmond Halley in the early 1700s. He also ensured
that William Whiston was elected to his own Lucasian Chair in Cambridge from which he
had eventually resigned in 1703.

In his old age. he did not mellow. An acrimonious quarrel arose with Flamsteed, the
first Astronomer Royal, who had made very accurate observations of the Moon, which
Newton wished to use in his analysis of its motion. Newton became impatient to use
these observations before they were completed to Flamsteed’s satisfaction. Newton and
Halley took the point of view that, since Flamsteed was a public servant, the observations
were national property and they eventually succeeded not only in obtaining the incom-
plete set of observations but also in publishing them in an unauthorised version without
Flamsteed’s consent in 1712. Flamsteed managed to recover about 300 of the unautho-
rised copies and had the pleasure of burning this spurious edition of his monumental
work. He later published his own definitive set of observations in his Historia Coelestis
Brittanica.

The infamous dispute with Leibniz was even nastier. It was fomented by Fatio de Duillier
who brought the initial charge of plagiarism against Leibniz. Leibniz appealed to the Royal
Society to set up an independent panel to pass judgement on the question of priority. Newton
appointed a committee to look into the matter but then wrote the committee’s report himself
in his Commercium Epistolicum. He wrote it as if its conclusions were impartial findings
which came down in Newton’s favour. But he did not stop there. A review of the report was
published, in the Philosophical Transactions of the Royal Society, which was also written
by Newton. anonymously. The story is very unpleasant, to say the least, particularly since
Leibniz had unquestionably made original and lasting contributions to the development of
the differential and integral calculus. Indeed, the system of notation which is now used
universally is that of Leibniz, not Newton.
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Newton died on the 20 March 1727 at the age of eighty-five and was buried in Westminster
Abbey.
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Appendix to Chapter 4: Notes on conic sections and central orbits

It may be useful to recall here some basic aspects of the geometry and algebra associated
with conic sections and central forces.

Equations for conic sections

The conic sections are the shapes obtained by slicing through a double cone at different
angles. Their geometrical definition is as follows: they are the curves generated in a plane
by the requirement that the ratio of the perpendicular distance of any point on the curve
from a fixed straight line lying in the plane and the distance of that point on the curve from




