

Astronomy 350L (Spring 2005)

The History and Philosophy of Astronomy

(Lecture 18: Birth of Astrophysics I)

Instructor: Volker Bromm TA: Amanda Bauer

The University of Texas at Austin

Big Q: What is the Nature of the Stars?

Can we ever know the `Physics of the Stars'? (= astrophysics)

• Auguste Comte (1798-1857)

founder of `Positivism'

- real knowledge only due to hard facts, e.g., laboratory science, measurements

claimed that we will never know the nature of the stars

- distant stars are forever out of our reach

- we cannot conduct laboratory experiments with them

- Which questions would an astronomer have asked about the stars in the early 1800s?
 How far away are they (stellar distance scale)?
 - What are the stars made of (stellar composition)?
 - How massive are they?
 - How long do they live (stellar lifetimes)?
 - By what mechanism do they shine?
 - Is the Sun just a (nearby) star?
 A: Yes, already widely believed (Descartes, Newton)

The Hunt for Stellar Parallax!

The Hunt for Stellar Parallax!

Measuring the Distance to the Stars

- Friedrich Wilhelm Bessel (1784-1864)
- highly talented in astronomy and mathematics ("Bessel functions")
- director of Königsberg Observatory
- 1838: First stellar parallax

Q: How to select promising candidates?

• possible criteria:

1) brightest stars

2) most rapid proper motion

Bessel's choice!

Stellar Motions on the Sky

proper motion <u></u>_1/d

Q: How to select promising candidates?

• 61 Cygni: the `flying star' (5 arcsec per year)

Great Success: First Stellar Parallax (1838)!

Bessel: 61 Cygni
 - 1/3 arcsec - 10.3 Lightvears

 almost simultaneously:
 Wilhelm Struve: Vega
 Thomas Henderson: Alpha Centauri

Bessel's heliometer

The True Brightness of the Stars

 what we measure: flux = energy/area
 (`apparent brightness')

if distance (d) to star
 is known, can figure
 out true (intrinsic)
 brightness
 = Luminosity (L)

• $L = 4 \times pi \times d^2 \times flux$ ("inverse-square law")

What stuff are the Sun and stars made out of?

• scrutinize the light that we receive!

The Message of Starlight (Newton 1666)

• white light is composed of different colors!

The Spectrum of the Sun

 Joseph Fraunhofer (1787-1826)

 master optician and telescope builder

 1814: Discovery of Spectral Lines in Solar Light (= `Fraunhofer lines')

The Spectrum of the Sun (1814)

• Fraunhofer lines: dark lines

<u>Gustav Kirchhoff (left)</u> and Robert Bunsen. • Heidelberg in 1850s and 60s:

 Gustav Kirchhoff (1824-87) and Robert Bunsen (1811-99)
 discover the `Laws of Spectral Analysis'

Robert Bunsen
 (`Bunsen burner')

Flame test' (Spectral Analysis):
 each chemical element has a distinct fingerprint!

- `Flame test' (Spectral Analysis):
 - each chemical element has a distinct fingerprint!

- 12 24	IA 1			Р	er	in	lic	۰٦	าล ์	Ы	P							2
50 50	н 3	IIA 4	E.	1 . 	6 +	ha	$\frac{1}{\Gamma}$	ר ע 10	. a		ta		IIIA 5	IVA 6	VA 7	VIA 8	VIIA 9	10
2	Li	Be		O	LL.	ne	E	le	Ш	en	us		В	С	Ν	0	F	N
3	11 Na	12 Mg	ШВ	IVB	٧B	ΥIB	VIIB		— VII -		IB	IB	13 AI	14 Si	15 P	16 S	17 CI	18 A I
4	19 K	20 Ca	21 Sc	22 Ti	23 ¥	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 K I
5	37 Rb	38 Sr	39 ¥	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 	54 X
6	55 Cs	56 Ba	57 *La	72 Hf	73 Ta	74 ₩	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 TI	82 Pb	83 Bi	84 Po	85 At	86 R I
7	87 Fr	88 Ra	89 +Ac	104 Rf	105 Ha	106 106	107 107	108 108	109 109	110 110				- Constants				
										150-1-1								
۲L ۲	antha eries	anide	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu		
- A S	ctinid eries	e	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr		

Periodic Table: Dmitri Mendeleyev (1869)

 Flame test' (Spectral Analysis):
 Kirchhoff/Bunsen discover new elements (Rubidium, Caesium)

• The Laws of Spectroscopy:

- dark lines = absorption lines
- bright lines = emission lines

Niels Bohr (1885-1962)

Bohr's quantum model of the atom (1913)

Bohr's quantum model of the atom (1913):
emission and absorption lines!

• Father Angelo Secchi (Jesuit, 1818-78)

 first scheme to classify stellar spectra

 great classification effort at Harvard College Observatory, beginning in 1880s

the `women calculators' of Harvard

- Annie Jump Cannon (1863-1941)
- master classifyer
- instrumental in publishing the Henry Draper Catalogue
 - 1918-24, ~ 225,000 stars:
 - each with spectral type and brightness

The Harvard Sequence of Spectral Types

Traditional mnemonic: "Oh, Be A Fine Girl, Kiss Me!"

 arranged in order of decreasing temperature on the surface of the star

Spectral Type and Temperature

• Red à lower Temperature, blue à higher T

Chemical Composition of the Stars

- Cecilia Payne-Gaposhkin (1900-79)
- Harvard PhD 1925
- hydrogen and helium are most abundant elements in the universe!

Chemical Composition of the Stars

measured strength of spectral line (S) =

abundance (A) x transition probability (P)

-Metal lines (e.g., Ca): $S = a \times P$ -hydrogen lines: $s = a \times P$

Hydrogen is most abundant element!!!

Birth of Astrophysics (part 1)

• Measuring the Distance to the Stars:

- Friedrich Wilhelm Bessel
- 1838: First successful stellar parallax
- 61 Cygni: 1/3 seconds of arc à 10 lightyears
- " "the greatest triumph which astronomy has ever witnessed" (John Herschel)

• Figuring out the composition of the stars:

- spectral analysis (absorption and emission lines)
- Harvard classification: stars can be grouped according to spectral type (and thus surface temperature)
- OBAFGKM
- Hydrogen and Helium are most abundant elements in the Sun and the stars (Cecilia Payne)