- Required Reading Textbook Chapters 9, 10, 11, 12, 13, 14 15, 2, 3
- Important Lecture Material

How Stars Work
equilibrium, entirely gaseous
perfect gas law
hydrostatic equilibrium
thermal equilibrium

Heat Transfer
 conduction
 convection
 radiation
 opacity

Energy Sources

gravitational collapse energy nuclear energy (fusion)

E=mc²

specific reactions

P-P chain

Н→Не

CN cycle

10 million° K

Helium burning

 $He \rightarrow C$

Carbon burning

100 million° K C→O, Mg, S

600 million° K

last possible:

up to iron

How Stars Evolve

- Star Formation (Protostars)
 collapse to the main sequence
 limits to stellar masses
- Main sequence evolution
- Leaving the Main Sequence
- · Helium Flash
- Post-Helium Flash
- Compare all this to Clusters
- Stellar Death

white dwarfs

neutron stars, supernovae, and pulsars

black holes

The Galaxy

- Shape, size, and our location in it
- The sun's orbit in the Galaxy
- The Galaxy's mass
- The gas and dust between the stars
- Neutral hydrogen and the 21-cm line
- The spiral structure
- Stellar populations
- Star clusters

Galaxies

- Types of galaxies
- Spirals and barred spirals
- Ellipticals
- Irregulars
- The approximate ranges of masses, sizes, and luminosities of each type
- The stellar populations of each
- Clusters of galaxies
- Galaxies as radio sources
- Formation of galaxies

Cosmology

- Olber's Paradox
- Expansion of the universe and Hubble's Law
- The age of the universe
- General theory of relativity
- Cosmological principle
- Perfect cosmological principle
- Evolutionary and steady-state cosmologies
- How the universe ends (closed, open, flat)
- Observational tests

Old-Fashion Astronomy

- Motions of the stars across the sky as seen from different latitudes
- Time
- Why different stars
- The seasons and why it gets dark early in winter
- The phases of the moon
- Rotation of the moon
- The calendar

- 1. The Sun is a main-sequence star. Where did the calcium that we see on the Sun's surface come from? Prove that the sun could not have made it.
- 2. Cite the evidence that all globular star clusters are old.
- 3. Why are main-sequence stars so much more common than red giants?
- 4. Since all stars smaller than about two solar masses evolve into white dwarfs and since such stars are so plentiful, why don't we see billions of white dwarf stars?
- 5. Imagine that the temperature of the center of a star is suddenly increased. What will happen and why?
- 6. In the Big Bang Theory of the origin of the Universe, why do distant galaxies have large velocities of recession?
- 7. In spiral galaxies one finds regions of ionized hydrogen containing very hot stars strung out like beads along the spiral arms. What implications does this have for star formation?
- 8. Can a red main-sequence star be young? Explain fully.
- 9. Population II stars are expected to form in a collapsing cloud of gas after the Population III stars have died. This collapsing cloud marks the formation of a galaxy. Compare the luminosity of elliptical and spiral galaxy of the same mass at this stage.
- 10. Why will most stars die as white dwarfs?
- 11. In the Big Bang Theory, how do we estimate the age of the Universe?
- 12. Why don't elliptical galaxies have disks full of Population I stars?
- 13. Why doesn't a white dwarf star collapse as it cools?
- 14. Remembering only how the main sequence lies in the H-R diagram, how can you prove that main-sequence O stars are burning their hydrogen much faster than main-sequence M stars?