
 
CLASSNOTES 9 
Here are some notes on the structure of atoms to supplement the text.  
Around the turn of the century, it was appreciated that atoms consist of 
electrically charged particles, both positive and negative. The physicist J.J. 
Thomson proposed a model for the structure of the atom based upon a 
relatively large, positively charged, amorphous mass in which much smaller, 
negatively charged electrons are embedded. This was known as the 'plum-
pudding' model. The sizes of atoms were known to be about an Ångström or so  
(1 Å = 10-8cm). Some of the earliest sensible conclusions concerning atomic 
structure were based on experiments carried out or inspired by Geiger and 
Marsden at the direction of E. Rutherford. These experiments involved 
directing a stream of α-particles (helium nuclei) towards a piece of gold foil 
(Fig. 1). Radium, encased in a lead block as shown, provided a parallel beam of 
α-particles which carry positive charge and move at very high speeds.  
 

Figure 1. Rutherford's apparatus for an analysis ofα-particle scattering by gold 
foil. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 2. The expected result of the Rutherford alpha-particle scattering 
experiment, assuming the Thomson model.  
 
 
It was anticipated, based upon the Thomson atomic model, that the stream of α-
particles would pass straight 
through the foil (Fig. 2 ), with 
perhaps just a few particles 
being slightly deflected. This 
is because the Thomson model 
postulates a rather uniform 
distribution of matter and 
positive/negative charge 
throughout the atom. The 
deflections arise because the 
positively charged α-particles pass close to individual electrons or regions of 
positive charge. Recall that like charges repel and unlike charges attract as in 
the sketch here.  
 
The results obtained were a great surprise to Rutherford. Certainly, most of the 
alpha-particles did pass straight through the foil. However, a few were 
deflected through quite large angles, sometimes greater than 90°. Such large 
deflections would not occur if the Thomson model was reasonably correct. The 
experimental results led Rutherford to suggest that an atom consists of a very 
small, but relatively massive, positively charged nucleus, surrounded by 
electrons (Fig. 3). The components of the atom are held together by 
electrostatic forces. Virtually all the mass of the atom is associated with the 
positively charged nucleus, even though it is so small relative to the size of an 
atom. The close approach of an α-particle to the massive nucleus of a 
Rutherford atom occasionally results in a large scattering angle.  
 

 



Figure 3. The results of the Rutherford alpha-particle scattering experiment. 
 
Rutherford suggested that the reason most α-particles pass through gold foil 
with no or little deviation is simply that the atom is largely empty space and 
just doesn't interact much with the intruding high-speed alpha-particle. 
However, just occasionally, one of the alpha-particles collides with, or comes 
very close to the 'massive' positively charged nucleus. The gold nucleus has a 
positive charge of 79 units and a mass of about 197 units. The α-particle has a 
positive charge of 2 units and a mass of about 4 units. The repulsive force 
between the α-particle and the gold nucleus scales as the product of their 
charges and inversely as the distance between them squared. In a direct hit, the 
massive gold nucleus is barely moved by the colliding α-particle, which will be 
deflected through a large angle, even to the extent of deflecting it back along 
the direction from which it came. The diameter of the nucleus was shown to be 
about 1/105 the size of the atom itself or 10-13 cm or so. Clearly these ideas 
portray an atom very different from the Thomson model.  
 
Rutherford in characteristic style expressed his surprise at the results of the 
scattering experiment:  
 

"It was quite the most incredible event that has ever happened in my life. It 
was almost as incredible as if you fired a 15-inch shell at a piece of tissue 
paper and it came back and hit you." 

 
We'll return to discuss the nucleus when we discuss stellar evolution. The 
immediate problem with Rutherford's model atom was to account for the 
stability of the electron cloud. According to well-tested ideas, moving electrical 
charges such as electrons in orbit must lose energy by emitting electromagnetic 
radiation, and then spiral quickly into the positively charged nucleus. But atoms 
are stable! The first step to the solution was made by Niels Bohr. Basically, the 
rules of physics are different at the atomic level. Seeds gives an adequate 
description of current ideas on atoms but omits to mention the names of the 
great pioneers.  
 
As we shall discuss in class, the nucleus of an atom is composed of protons and 
neutrons. The neutron is just a little bit more massive than the proton. Both are 
roughly 2000 times more massive than the electrons that make up the electron 
cloud around the very compact nucleus. An electron carries one unit of negative 

charge. The proton has one unit of positive charge. The neutron, as its name 
implies, has no charge. A free (isolated) proton is stable -- experiments have 
shown that, if it decays, it lives at least 1033 years or so before decaying. A free 
neutron decays spontaneously in about 11 minutes. A neutron inside a nucleus 
can be stable. Neutrons and protons basically retain their identities when placed 
together to form a nucleus.  
 
Scattering experiments done in the spirit of Rutherford's original experiment – 
i.e., firing high velocity charged particles at a target and observing their 
scattering – have shown that neither the proton nor the neutron are simple point 
masses with charge. Both exhibit structure. Each has been shown to be made up 
of three more elementary particles called Quarks.  
 
Quarks have fractional electrical charges of either positive two-thirds or 
negative one-third. They can combine in twos or threes: protons, with positive 
charge of one, consist of two 'up' quarks and a 'down' quark; neutrons, with no 
electrical charge, consist of one 'up' quark and two 'down' quarks.  
 
Our concerns end with the protons, neutrons, and electrons. There are several 
popular accounts of elementary particles. If I tell you the names of the six 
quarks – up, down, strange, charm, bottom, and top – you may be intrigued to 
read more. Each has an anti-particle: antiup and antitop, for example.  
 
Quarks were once thought to be 'fundamental,' that is not themselves composed 
of even more fundamental particles.  Now, theories suggest that quarks are 
made of 'strings' which are the fundamental units if matter.  For a readable 
account of strings, and much else see 'The Elegant Universe' by Brian Greene 
(paperback).  
 
Proportions 
 
In discussions of many topics, it is convenient to introduce 'proportions.' As 
many students seem to be unduly puzzled by the concept, I offer these notes.  
 
1. Mathematically, there is a simple relation between an equation and the 

concept of proportions. Consider the case of Newton's law of 
gravitation. Take two stars A and B. The gravitational force between 
them, as given by Newton's law, is  

 

                                            F = G
MAMB

R2AB
 

 
Here the masses of A and B are MA and MB respectively and the 
distance between them is RAB.  

 
Suppose we have many pairs of stars but the separation of stars for 
each pair is the same. If we want to describe how the gravitational 
force varies from one pair to the next, we might say:  

 
the gravitational force between a pair of stars is proportional 
to the product of the individual masses.  

 



It is not necessary to say anything about the separation of the two stars 
because it is same for all pairs. This expression does not tell us the 
strength of the force in any one case but simply that, from one pair to 
the next, the force scales as the product of the masses MA and MB. If 
we wish to calculate the strength of the force, we do need to know the 
separation RAB and the constant G.  

 
If, in a second family of binary stars, the masses were the same in each 
pair but the separations between the stars differed, we might wish to 
say that the gravitational force between a pair of stars is inversely 
proportional to the square of the distance between them.  

 
(Equivalently, '. . . is proportional to one over the square of the 

distance between the two stars.')  
 

As in the first example, if we wish to calculate the strength of the 
force, we need to know the masses MA and MB, and the constant G.  

 
The words 'are proportional to' are represented by the symbol ∝, and 
so an equivalent statement for the second of the above examples is  

 

F ∝ 1
AB
2R

 

 
2 In this section, I attempt to show how we often use a proportionality in 

simple problems. I choose the case of the relation between luminosity 
and brightness of a star. Recall that:  

 
Luminosity (L): the total amount of energy a star given off by a star 
in a fixed amount of time.  

 
Brightness (B): the amount of energy from a star collected here on 
Earth in a fixed amount of time and, usually, we also specify the area 
over which the light is collected.  

 
You will appreciate that L and B are related by the distance of the star 
from Earth. Two stars of the same L but at different distances will 
have different B; the more distant star appearing fainter.  

 
In class we derived (Classnotes 6) the relation between L, B, and 
distance d, which I write as  

 

B ∝ L
d2

 

 
By using the symbol ∝, I avoid having to introduce discussion of the 
units used for the B, L, and d.  

 
I will now work a simple problem using the above expression and then 
do the same problem using 'the formula.'  

 

Problem: Two stars are equally luminous but at different distances. 
One star is at 10 light years from Earth and the other at 20 light years.  

 
Which star is fainter? To answer this question, we should not need to 
manipulate either the proportionality or the equation! The more distant 
star must be fainter. Its light is spread out more!  

 
How many times fainter is the more distant than the nearer star? In 
this case, we need the proportionality (or the equation). Looking back 
up the page we see that, for stars of the SAME L, B scales as 1/d2. At 
20 light years the more distant star is twice as far as the nearer one. If 
d increases by a factor of 2, d2 increases by 2 x 2 = 4 times. Then, the 
star at 20 light years is 4 times fainter than the one at 10 light years.  

 
Equation lovers and formulae fanatics might look at the problem 
differently. The formula required is  

 

B = a L1

d2  

 
where a is a numerical constant that ensures that L/d2 is in the same 
physical units as B.  

 
Number the stars 1 and 2. For star 1 we may write  

 

B1 =  a L1

1
2d

, and for star 2  B2 = a
L2
2
2d

 

 
Now divide one equation by the other. This cancels out the constant a 
and gives the general result  

 
B1
B2

=
L1
L2

2
2d
1
2d

 

 
In the particular problem here, L1 = L2, and we are asked to find the 
ratio B1/B2. Then,  
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Now we may substitute 20 light years for d1 and 10 light years for d2 
to obtain  
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which tells us that the brightness of star 1 (20 light years) is 1/4 that of 
star 2 (10 light years) or equivalently the more distant star is four 
times fainter than the nearer one. Just the answer we got using the 
proportionality relation.  

 



3. Other points about proportionality:  
 

The proportionality  
 

F ∝ MAMB

R2
 

 
describes how the force due to gravitation depends on the masses and 
their separation.  

 
This relation cannot be expressed directly as the equation  

 

F = MAMB

R2
 

 
The correct equation is, as stated earlier,  

 

F = GMAMB

R2
  where G is a constant.  

 
Proportionalities can be manipulated like equations, as we saw in the 
example of the brightnesses of the two stars. Here is a second 
example.  

 
We shall show that the luminosity (L) of a star depends on its radius 
(R) and surface temperature (T) such that L ∝ R2T4.  

 
This is equivalent to  

 

R2 ∝
L
T4

;   T 4 ∝
L
R2

;  T ∝  L
R2
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  etc. 

 
I happen to think that for us a proportionality is easier to understand and 
manipulate than the corresponding equation. But you may well think otherwise. 
No problem -- as long as we arrive at the same answer!!  
 


