SURVEYOR'S METHOD

- Measure baseline
- Measure angles A and B
- Construct the unique triangle: then, you know distance to P

Distances to Stars?

Distances » Earth's size

Distances still » Earth-Sun distance but method works for nearest 100–1000 stars

P = Parallax = 1/2 (the angle at star)

Distance in parsecs

= Parallax (in seconds of arc)

1 parsec = 3 1/4 light years = 206, 265 A.U.

Abbreviations

1 parsec = 1 pc

1000 pc = 1 Kpc

1,000,000 pc = 1 Mpc

HIPPARCHOS!

TELESCOPE IN SPACE

- PARALLAXES
 - · WHY MORE ACCURATE?
 - · WHY IS THE GAIN IN ACCURACY IMPORTANT?

PARALLAX DETAILS

D STAR MOVES RELATIVE TO SUN

2) SHIFTS DUE TO PARALLAX depends on * position rel. to ECLIPTIC [FOR NO *-0 MOTION]

AT ECLIPTIC ON ECL

ECLIPTIC

POSITION

1

CIRCLE

LINE

ELLIPSE

What is the distance in parsecs of a star with a parallax of 0.2?

Two stars have parallaxes of 0.1 (A) and 0.05 (B), respectively.

Which star is closer to us, and by what factor?

If the stars are equally luminous, how much brighter will the nearer one appear than the farther one?

A is closer; larger parallax is twice as close.

Brightness & Luminosity
Distance²

Three stars of equal absolute luminosity are at distances of 1, 2, and 10 pc.

If the second star has a brightness of 1 unit, what are the brightnesses of the others?

$$\frac{B_{0}}{B_{0}} = \frac{L_{0}}{L_{0}} \left(\frac{d_{0}}{d_{0}} \right)^{2} = \frac{1}{4}$$

$$\frac{B_{0}}{B_{0}} = \frac{L_{0}}{L_{0}} \left(\frac{d_{0}}{d_{0}} \right)^{2} = \frac{1}{4}$$

$$\frac{B_{0}}{B_{0}} = \frac{L_{0}}{L_{0}} \left(\frac{d_{0}}{d_{0}} \right)^{2} = \frac{1}{4}$$

What are the apparent luminosity (brightness) ratios of the following pairs?

	1	\mathbf{D}_{1}	L_2	\mathbf{D}_{2}
a	10	10	25	10
b	5	5	50	100
C	1	1/2	1/4	1/3

L = Absolute Luminosity

D = Distance

TRY THIS AT HOME!

Star A has a parallax of 0.2 and B a parallax of 0.4. Star B appears 3 times as bright as Star A.

Which of the stars is more luminous (absolute luminosity) and by how much?

AND THIS ONE!

Two stars are observed to have the same parallax and the same brightness. One is red and the other is blue.

Which star is larger?

- 1. Same parallax \rightarrow same distance.
- 2. 1 + same brightness → same absolute L
- 3. $red \rightarrow cool : low L per unit area blue \rightarrow hot : high L per unit area$
- 4. $2 + 3 \rightarrow \text{red star larger area than}$ blue star

Hertzsprung-Russell Diagram

Luminosity plotted against

Spectral Type
Color
Temperature

BRIGHTEST STARS

· NEAREST STARS

STELLAR CENSUS

[SEEDS P. 172+ FIG 8.24]

* RESULTS DEPEND ON SELECTION CRITERIA.

FOR SOLAR NEIGHBORHOOD:

- · MOST COMMON ? M DWARFS
- WHICH STARS PROVIDE

 MOST OF BLUE LIGHT? THE FEW

 O(B STARS
- WHICH ... RED LIGHT? THE FEW RED GLANTS & SUPERGLANTS
- WHAT KIND OF STARS HAVE

 MOST OF THE MASS? M DWARFS:

 EACH OF LOW MASS BUT LOTS

 OF THEM
- * WHY ARE RED GLANTS COMMONS AMONG THE BRIGHTEST STARS BUT NOT AMONG NEAREST STARS

BETELGEUSE

T~3000 K

or

$$= \frac{20,000}{(3000(6000)^4} = \frac{20,000}{(1/2)^4}$$

$$Q = \sqrt{320,000} R_{\odot} = 565R_{\odot}$$
 $\approx 2AU$

• A

• B

- Teff

NOW, L & R2T4

THEN,

 $\frac{L_A}{L_B} = \frac{R_A^2}{R_B^2}$

as TA = TB

RB = RA LB

R_B = R_A/L_B L_A

* NOW COMPARE STRIUS A AND B

SIRIUS A AND B

Sirius A: L ~ 30 Lo B: ~ 0.003L0

 $\frac{R_B}{R_A} \approx \sqrt{\frac{L_B}{L_A}} \approx \sqrt{\frac{0.003}{30}}$ ≈ √0.0001 ≈ √10-4 ≈ 10°0 ≈ 0.01 , if we ignore fact that A is slightly hotter

than B

MASS, RADIUS, AND DENSITY

$$e = \frac{M}{45R^3} \propto \frac{M}{R^3}$$

SUN HAS AVERAGE DENSITY OF

1.4 9m/cm³ ≈ WATER

WHITE DWARF (SIRIUS B)

$$e^{\frac{m}{R^3}} \sim 10^6 \frac{m_0}{R_0^3}$$

Fig. 2.9 Schematic drawing whose main purpose is to make you remember that white dwarfs are very dense!

RED SUPERGIANT (BETELGEUSE)

$$=\frac{109}{109}\frac{m}{R_0^3}$$

ON AVERAGE, BETELEGUSE HAS
DENSITY LOWER THAN THAT
REPRESENTED BY BEST
VACUUM ON EARTH

WHITE

RED SUPERGIANT

MASS

~ 1 Mo

~ IOMo

RADIUS

100 RO

1000 Ro

(RADWS OF EARTH) (EARTH'S ORBIT
AROUND SUN)

DENSITY

10 XWATER

10 × WATER

NOT THE MOST EXTREME

NEUTRON STARS BLACK HOLES MUCH LARGER RADIUS

= UNLIKELY / IMPOSSIBLE

GASES NOT RESTRAINED 134 STAR'S GRAVITY

HR DIAGRAM & DISTANCES TO

STARS: METHOD OF SPECTROSCOPIC PARALLAX.

BASIC IDEA

- · MAIN SEQUENCE from STARS WITH ACCURATE TRIGONOMETRICAL PARALLAXES
 - E GOOD CORRELATION OF L WITH SPECTRAL TYPE
 - IDEA! CORRELATION TRUE FOR ALL MAIN SEQUENCE STARS
 - OBSERVE A STAR'S SPECTRUM.
 TO GET SPECTRAL TYPE

· IF NOT LUMINOSITY

CLASS V - GIVE UP!

• IF CLASS V, LOOK UP

L FROM CORRELATION

COMBINE THIS L AND

OBSERVED BRIGHTNESS TO

GET DISTANCE

KEY: MAIN SEQUENCE IS NARROW

WE KNOW WHY MAIN SEQUENCE IS NARROW BUT NOT CRITICAL TO OPERATION OF METHOD

WHY ARE SPECTROSCOPIC PARALLAXES
OF GIANTS AND SUPERGIANTS
INACCURATE?

LUMINOSITY CLASSIFICATION (I, II, III, IV) helps but uncertainty remains.

AN EXERCISE

IS THIS STAR.

GETTING SLARGER
SMALLER
NOT
CHANGNG

KEY to Answer is L & R2T" For a, there is NO change of T but L riceases. therefore, R mur increase as Licrosse: L x R² for constant T

Red Giants/Supergiants

Why red?

Why giant/supergiant?

White Dwarfs

Why white?

Why dwarf?