BB LAWS AND PLANETS

- Planets are not fair approximation to BB:
 - Lots of sunlight reflected
- Spectrum

- Component 1 is reflected sunlight
- Component 2 is em radiation emitted by a planet's surface/atmosphere and may approximate a BB spectrum

WHY IS THE TEMPERATURE OF 1 ABOUT 6000K?

WHY IS THE TEMPERATURE OF 2 ONLY A FEW HUNDRE DEGREES KELVIN?

TYPES OF SPECTRA

ABSORPTION-LINE Stars

EMISSION LINES Hot gas

Visual portion of stellar spectrogram

Formation of absorption lines by a stellar atmosphere

Lamp

Cell of gas

Spectrograph

- Lamp observed without gas cell gives a continuous spectrum (approx. a blackbody spectrum)
- When gas cell is put in the light path, an absorption spectrum is obtained

•Photons of wavelength greater and smaller than λ_x pass through the cell without being scattered. WHY?

SPECTRUM (no cell)

SPECTRUM (gas cell)

WHY?

• Suppose atoms in gas cell absorb photons at wavelength λ_x because such photons cause an electron in orbit around the atom's nucleus to jump from an inner Bohr orbit to an outer orbit

$$E_{x} = \frac{hc}{\lambda x} = E_{outer} - E_{inner}$$
$$= 6$$

• Often, the electron in the outer orbit will quickly lose energy and emit a photon of wavelength λ_x

But this photon will be emitted in a random direction, i.e., scattered out of the beam.

• Net result is a loss of photons of wavelength λ_x from the light passing through the cell

- Stars are spheres of hot gas, often primarily composed of hydrogen and helium
- Light from the interior of a star does not escape directly; interior not visible from the outside. (Hot fog).
- Starlight comes from a thin outer skin or atmosphere.
 - —Sun of radius about 500,000 km has an atmosphere about 200 km thick

- Betelgeuse (red supergiant) has an atmosphere that is 500,000 km thick but the radius of this star is about 200 x the Sun's radius.
- Atmosphere is not a layer sharply bounded top and bottom. It may extend outwards to great distances as a wind blown off a star.

What's behind spectral classification?

- Two principal factors
 - atmospheric temperatures
 - atmospheric pressures
 or; equivalently, the
 surface gravity
 - · CHEMICAL COMPOSITION

Spectral Classes

Spectral Class	Approx. Temp. (K)	Hydrogen Balmer Lines	Other Special Features
Ο	40,000	Weak	Ionized helium
В	20,000	Medium	Neutral helium
A	10,000	Strong	Ionized calcium weak
F	7,500	Medium	Ionized calcium weak
G	5,500	Weak	Ionized calcium medium
K	4,500	Very weak	Ionized calcium strong
\mathbf{M}	3,000	Very weak	TiO strong

Luminosity Classes

V Main Sequence [Dwarfs]

IV Subgiants

III Giants

 Π

I Supergiants

Important Results

- Presence of an absorption line due to species X, shows that element X is present in stellar atmosphere.
- To determine the concentration of X, temperature and other properties of the atmosphere must be known.
- Absence of lines due to an element does NOT always mean that the element is not present in the atmosphere.

Hydrogen Atom

- 1 electron around a proton
- Orbits labelled by a QUANTUM NUMBER, n

• Radius of orbit
$$R = \frac{n^2}{2} \text{ in } \mathring{A}$$

• Energy of orbit
$$E \propto -\frac{1}{n^2}$$

Hydrogen Balmer Lines

- Recall Balmer absorption lines involve electron jumps from n=2 to $n \ge 3$ [not n=1]
- Electron must be in *n*=2 to absorb a Balmer photon
- But electron in n=2 is <u>very</u> likely to jump $n=2 \longrightarrow n=1$ in a flash of a second

- Electrons in *n*=1 have to be forced back to *n*=2 by energetic photons or particles.
- Since the $1 \rightarrow 2$ jumps occur at a much lower rate than the spontaneous $2 \rightarrow 1$ jumps, the number of H atoms with an electron in n=2. is much less than n=1.
- The proportion in n=2 increases with increasing temperature.
- [WHY?]

$$T = 3000K 6000K 10,000K$$

 $\frac{N(n=2)}{N(n=1)} 10^{-17} 10^{-9} 10^{-5}$

- It is the number in n=2 that controls the strength of a Balmer line Strength increases from 3000K to 10,000K
- At temperatures of 10,000K and higher, the increasing numbers of energetic photons and particles remove H's electron (H is ionized) and reduces the number of H atoms

•Then, Balmer line strengths decrease for T ≥ 10,000K

Calcium

- Neutral Ca atoms easily ionized
- Ca⁺ions fairly easily ionized
- Absorption lines from "first" Bohr orbit of Ca and Ca⁺ fall in visible spectrum.
- Lines of Ca⁺⁺not present in visible spectrum.

- COOL Stars
 Ca atoms more abundant than Ca⁺ions
- WARM Stars
 Ca atoms and Ca⁺ions are roughly equally abundant
- VERY WARM Stars
 Ca⁺ions abundant with some Ca⁺⁺
 ions and a few Ca atoms
- HOT Stars
 Ca⁺⁺ions most abundant

Molecules

- Examples: TiO, CH, CO, H₂O
- Molecules are fragile and rather easily broken up by energetic photons and particles
 - Molecules reside only in cool stellar atmospheres.
- Strength of molecule's absorption lines
 DECREASES with INCREASING temperature,
 e.g.

TiO strong in M stars, weak in K stars, and undetectable in G and hotter stars.