AST 301

Introduction to Astronomy

AST 301

INTRODUCTION TO ASTRONOMY

David L. Lambert
RLM 16.316, 471-7438, 502-9804
Office Hours: T W Th 10am – 3pm
M & F by appointment

TA

N. Vutisalchavakul

Office Hours: T Th 4 - 5 pm

RLM 15.310E

TA

Jinsong Liu

Office Hours: T 5 – 7 pm

ECJ 3.402

Text: Stars and Galaxies by Seeds and Backman, 9th Edition at Co-op

Notes:

http://www.as.utexas.edu/astronomy/education/fall15/lambert/301.html

Grades: see Class Notes I

3 quizzes, 6 homeworks and a final

Monday, December 14 9am - noon

Goal

- To present a contemporary view of the origin and evolution of the Universe and its principal components.
- To illustrate how a science works and matures.
 - Not just facts but indications of how we acquire and interpret facts.
 - Astronomy is a science.Astrology is not.
- A complete survey except the solar system.

The Scale of The Cosmos

- Solar System
- Our Galaxy
- Local Group of Galaxies
- Local Supercluster of Galaxies
- Beyond to the Observable Limit

The solar System

Earth

Diameter = 13,000 km

Solar System

Sun + 8 Planets + Pluto and friends

1 Astronomical Unit (AU)

Sun

Hot gas, mostly hydrogen and helium

Diameter

- = 1,400,000 km
- = 110 Earth diameters

Mass

- $= 2 \times 10^{30} \text{ kg}$
- = 330,000 Earth masses

Temperature

- = 6,000 k at surface
- = 15 million k at center

Stars

- Sun is a typical star but...
- Masses from 0.1 to 100 M_{sun}
- Radii from a few kms to size of Earth's orbit
- Surface temperature from 1,000 K and down to 100,000 K and up

The Galaxy

- ~ 100 trillion stars + gas/dust
- Star-to-star separations ≈ few light years (mostly)
- Stars DO NOT collide
- Stars may be double, triple, ...in clusters
- Gas between stars

Our Galaxy and the Universe

- We are in the LOCAL GROUP of ~ 30 galaxies spread over a few million light years
- The Local Group is in the local SUPERCLUSTER of
 100 groups spread over 100 million light years
- Universe is made up of many superclusters out to about 10 billion light years, all expanding away from each other
- Galaxy Galaxy separations are often such that Galaxy collisions occur

Time Scales

- Age of Universe
 ≃ 14 billion years
- Age of Sun≃ 4.5 billion years
- Age of Earth
 ≃ 4.5 billion years

IF 1 COSMIC YEAR = 14 BILLION YEARS

AUG 13 : EARTH FORMS

DEC 13 : INVERTEBRATE LIFE

DEC 25 : DINOSAURS

DEC 30 : DINSOAURS DIED

DEC 31, 9pm : EARLIEST HUMANS

11pm 59m 30s : AGRICULTURE

47s : PYRAMIDS

59s : KEPLER/GALILEO/NEWTON

59.9s : ASTRONOMY 301

Scientific Notation

HOW DO WE HANDLE VERY LARGE AND VERY SMALL NUMBERS?

```
10^0 \equiv 1
 10^1 \equiv 10 10^{-1} \equiv 1/10
 10^2 \equiv 100 10^{-2} \equiv 1/100
 10^3 \equiv 1000 \qquad 10^{-3} \equiv 1/1000
 10^4 \equiv 10000 \quad 10^{-4} \equiv 1/10000
10^{2} x 10^{3} = 10^{5}

100 x 1000 = 100,000 

10^{2} x 10^{-1} = 10^{1} = 10 

100 x 1/10 = 10 

100 x 1/10 = 10 

100 SUBTRACT EXPON
```

$$21.4 \equiv 2.14 \times 10$$

$$214 \equiv 2.14 \times 10^{2}$$
...
$$0.214 \equiv 2.14 \div 10 \equiv 2.14 \times 10^{-1}$$

$$0.0214 \equiv 2.14 \div 10^{2} \equiv 2.14 \times 10^{-2}$$

$$\frac{6240}{3.12} = \frac{6.24 \times 10^{3}}{3.12} = 2 \times 10^{3} \equiv 2000$$

$$\frac{6240}{0.031} = \frac{6.240 \times 10^{3}}{3.12 \times 10^{-2}} = 2 \times 10^{5}$$

$$= \frac{6.240 \times 10^{3}}{3.12 \div 10^{2}} = 2 \times 10^{5}$$

$$= 2 \times 10^{5}$$

OR USE A CALCULATOR!

BASIC POINT!

- 6 x 10⁺²⁰ is a large number
 6 followed by 20 zeros
- 6 x 10⁻³⁰ is a very small number

$$\frac{6}{10^{30}}$$

SCIENTIFIC NOTATION – PREFIXES

<u>Prefix</u>	<u>Symbol</u>	<u>Factor</u>
giga	G	10 ⁹
mega	M	10 ⁶
kilo	k	10 ³
centi	С	10-2
milli	m	10-3
micro	μ	10 ⁻⁶
nano	n	10 -9

ASTRONOMICAL DISTANCES

 Astronomical unit (AU) is the radius of the Earth's orbit around the sun

```
1 \text{ AU} \approx 150 \text{ x } 10^6 \text{ km}
=8 light minutes
```

Light year (ly) is the DISTANCE light travels in one year

```
1 ly ~ 10<sup>13</sup> km
~ 63,000 AU
```

Parsec (pc) is the distance at which 1 AU subtends 1 arsec

```
1 pc ≃ 3.3 ly
≃ 200,000 AU
```