Astronomy 301 - Mon. Oct. 4

Guest lectures, today and Wednesday: Prof. Harriet Dinerstein

Last Friday: Overview of the Solar System, surfaces of terrestrial planets

Today: processes affecting surfaces of the terrestrial planets, general properties of Jovian planets, and moons that are nearly planets

Terrestrial vs. Jovian Planets

How do terrestrial planets differ from Jovian ones? Are there properties that only terrestrial planets have? Are there properties that only Jovian ones have?

Table 7-3	Comparing Terrestrial and Jovian Planets		
	Terrestrial Planets	Jovian Planets	
Distance from the Sun	Less than 2 AU	More than 5 AU	
Size	Small	Large	
Composition	Mostly rocky materials containing iron, oxygen, silicon, magnesium, nickel, and sulfur	Mostly light elements such as hydrogen and helium	
Density	High	Low	

Table 7-3 Universe, Eighth Edition © 2008 W. H. Freeman and Company

Properties of Terrestrial Planets

Surfaces: features, processes that cause change Atmospheres: gases present, thickness (will be discussed in much more detail next week, ch. 10) Interiors: what they're made of, conditions there

How do we learn about these, for remote planets?

Processes on Planetary Surfaces

 Impact craters: caused when objects from space crash; craters with central peak, crater walls, "rays".

 Vulcanism: the upwelling of lava (hot molten rock), produces conical volcanos, or broad flows that repave the surface. They also "erase" previous impact craters.

• Erosion: the slow wearing-down of surface features. What agents can you think of, that cause erosion on the Earth? What about on the Moon?

Planetary Interiors

• How do we know what planets are made of, inside?

Major clue: average density What do we need to know, in order to get the density?

Volume of a sphere:

$$Vol = \frac{4\pi R^3}{3}$$

Averaged density:

$$\langle \rho \rangle = \frac{Mass}{Vol} = \frac{Mass}{\left(\frac{4}{3}\right)\pi R^3}$$

Average Densities of Planets

The Inner (Terrestrial) Planets	Close to the Sun	- Small diam	imeter, small mass - High density	
	Mercury	Venus	Earth	Mars
Average distance from Sun (AU)	0.387	0.723	1.000	1.524
Equatorial diameter (Earth = 1)	0.383	0.949	1.000	0.533
Mass (Earth = 1)	0.0553	0.8150	1.0000	0.1074
Average density (kg/m ³)	5430	5243	5515	3934

water	1000 kg m ⁻³		
concrete	2000 kg m ⁻³		
Earth's crust	3000 kg m⁻³		
Earth's interior	~ 5000 kg m⁻³		

The Outer (Jovian) Planets	Far from the Sun - Large diameter, large mass - Low density			
	Jupiter	Saturn	Uranus	Neptune
Average distance from Sun (AU)	5.203	9.554	19.194	30.066
Equatorial diameter (Earth = 1)	11.209	9.449	4.007	3.883
Mass (Earth = 1)	317.8	95.16	14.53	17.15
Average density (kg/m ³)	1326	687	1318	1638

Planetary Magnetic Fields

Global magnetic fields arise from moving electrical charges that produce a magnetic field; need a rotating liquid core.

(This is another clue about the interior composition!)

Properties of Jovian Planets

Surfaces: cloud layers, bands, "spots" Interiors: what they're made of, conditions Companions: satellite systems, rings

Figure 13-2 Universe, Eighth Edition © 2008 W.H. Freeman and Company

Figure 12-2b Universe, Eighth Edition © 2008 W. H. Freeman and Company

Cloud layers create the visible "surface"

Figure 7-5 Universe, Eighth Edition © 2008 W. H. Freeman and Company Rapid rotation stretches atmospheric structures into bands.

Because they are gaseous, they can show "differential rotation," which means the rotation period is different for different latitudes

Solid-Body Rotation (e.g. the Earth)

© 2006 Pearson Education, Inc., publishing as Addison Wesley

Rotational Velocity = $\frac{2\pi R}{Period}$

Period is the same for all locations (latitudes), but the value of *R* changes with latitude! Locations at higher latitudes don't travel as far, so their speed is slower.

The "Great Red Spot" - long lived cyclone

Figure 12-4 Universe, Eighth Edition © 2008 W. H. Freeman and Company

Planetary Rings: Rings of Saturn

The rings are not solid, but made of small. icy bodies.

How do we know this?

differential rotation;

changing view of the rings

Uranus' Rings were discovered when they "eclipsed" background stars

...of rings and Roche Limits: the location where tidal forces shred bodies

Cosmic Connections 12a Universe, Eighth Edition © 2008 W.H. Freeman and Company

Yet More Worlds: Jovian moons

Jupiter's moons can be thought of as "worlds" in themselves, especially the *Galilean satellites* of Jupiter.

- Io: Active volcanoes (the "pizza" moon)
- Europa: Possible subsurface water ocean
- Ganymede: Largest moon in solar system
- Callisto: A large, cratered "ice ball"

Major Satellites of the Solar System

Table 7-2 **The Seven Giant Satellites** lo Ganymede Callisto Triton Europa Titan Moon Parent planet Jupiter Jupiter Jupiter Jupiter Neptune Earth Saturn Diameter (km) 3476 3642 3130 5268 4806 5150 2706 Mass (kg) 7.35 × 10²² 8.93 × 10²² 4.80×10^{22} 1.48×10^{23} 1.08×10^{23} 1.34×10^{23} 2.15 × 10²² Average density (kg/m³) 3340 3530 2970 1940 1850 1880 2050 Substantial atmosphere? No No No No No Yes No Callisto Triton Moon 0 Europa Ganymede Titan R I 🚺 U X G (NASA/JPL/Space Science Institute)

Table 7-2 Universe, Eighth Edition

© 2008 W. H. Freeman and Company