AST 301-Scalo Review sheet for exam #6

This exam covers chapters 22, 23, and 24.

Ch. 22--Study it all, except: Don't worry about "More Precisely 22-2.

Ch. 23: Omit: The historical discussion of "Discovery 23-1; Sec. 23.5 Galactic Spiral Arms (617-622); and Sec. 23.7, The Galactic Center)

Ch. 24: Try reading More Precisely 24-1, but I won't test you directly on that material. Omit sections 24.4 (Active Galactic Nuclei), and 24.5 (The Central Engine of an Active Galaxy).

The exam will be long, with about 40-45 questions.

I strongly recommend that you try all the Review and Discussion, and True-False/Multiple Choice questions at the end of each chapter; they are nearly all good ones, at the level that will be typical on the exam. (But not numerical problems.) In fact I will, as usual, take a few of the exam questions from the end-of-chapter and online questions.

As with Chapter 21 on the last exam, a good way to review Chapter 22 is to try to "tell the story" of the evolution of stars of different masses, this time starting with the red giant phase, when the helium has burned to carbon in the core, making sure you can explain all the events that occur after that. Each time you use some new terminology, e.g. "neutron degenerate core," try to explain what you mean, as if you were explaining this to someone with no background.

Most of Chapter 23 is concerned with how difficult it was to discover what kind of structure we live in (a galaxy, with a disk and a bulge and a halo). You should be able to explain how finding the distances to certain types of objects were the key to being able to get a picture of the galaxy we live in. You should know (roughly) the size of our galaxy (in parsecs), how far the Sun is from the Galactic Center, and the thickness of the galactic disk. Try to explain how the ages of the halo objects are known, and the ages of disk objects; how does this lead to a picture for how our Galaxy formed? Explain how the metal abundances in globular clusters are a crucial key.

There is a very basic theme running through all the material in Chapters 23 and 24: A lot of it is about learning to get distances to more and more distant objects so that we can map the structure of our own Galaxy (chapter 23) and the large-scale structure of the universe (starting with 24 and continuing in 25 on the next exam). In our Galaxy the use of these "standard candles" allows us to see the disk-halo structure and the presence of spiral arms; RR Lyrae variables give us the globular clusters in the halo and the resulting information about the evolution of our galaxy, Cepheid variables the distances to the nearest galaxies, then supernovae, the Tully-Fisher relation, and the Hubble relation to learn about the large-scale universe. The Hubble relation is especially important, since it tells us something very important about the history of the universe and allows us to map the most distant galaxies. Try to explain how each of these standard candles is used and what we learn from it—that would be a good way to review much of this material.

Here are some sample questions to see if you are prepared to take the exam. As usual, most of these tend to be a little more difficult than the average exam question.

1.	What type of object were millisecond pulsars likely to have been before becoming what the	hey are
presently	?	

a. single pulsars b. novae c. x-ray bursters d. gamma ray bursters

[over]

a. must be at least 8 se		e at least 1.4 solar n	nasses.	
c. are only known for	those neutron stars in binary s	systems.		
d. are only known for	neutron stars that are also wh	ite dwarfs.		
3. Why did it ta	ke until recently to realize that	t gamma ray bursts	are extremely far away?	
a. Previous gamma-ra	y telescopes were not sensitiv	e enough.		
b. Their spectroscopic	parallax could not be measur	ed because their lu	minosity was unknown.	
c. Only recently were	"afterglows" observed that al	lowed the distances	to be estimated using spectr	ral
lines.				
d. Gamma ray stars, t	hat correspond to the gamma i	ay bursters, have o	nly recently been discovered	l.
4. The major qu	estion in understanding gamm	na ray bursts has be	en	
a. why their periods a		-	ves are so similar to each of	her
	nes out as gamma rays		of energy required to power	
e. why they are so far	- ·			
	falling into a black hole, which	ch of the following	would be seen by a distant	
observer?		C	•	
a. The object would g	et brighter the closer it got to	the black hole.		
	up as it got closer to the black			
•	e object would increasingly re		er to the black hole.	
	egin to flicker, giving a metho			
	ing a black hole candidate, rat			ı
binary star system is t	he following.			
a) one of the two stars				
b) the unseen compan	ion in the system must have a	sufficiently high n	nass	
c) the system must be	a strong source of x-ray emis	sion.		
d) the seen companion	n must be an evolving main se	quence or giant sta	r	
e) there must be evide	ence for a very hot accretion d	isk.		
7. What type of radiat	ion is most useful in the mapp	oing of the Galactic	structure?	
a. dust emission	b. visible light c.	radio spectral line	d. infrared spectral lines	,
8 . What two obs	servations of objects allow for	a determination of	the Milky Way's mass?	
a) mass and velocity.	b) age and	distance from the	galactic center.	
c) mass and age.	d) velocit	y and distance from	the galactic center.	
9 . Which of the	following gives an estimate o	f the age of our Gal	axy?	
a. Cepheid variables	b. globular clusters c.	spiral arms d. o	bservations of hydrogen gas	
10. Which type of ga	laxy is the most numerous in t	the Local Group?		
 a. giant elliptical 	b. spiral galaxies		gular and elliptical galaxies	
11. What observa	ation is used in the Tully-Fishe	er relationship to de	termine distances?	
a. the maximum brigh		b. Cepheid l		
c. recessional velocity	ď	. neutral hydrogen g	gas 21-cm line broadenin	
12. Using the Hu	bble relation, what single obse	ervation is needed of	of a galaxy in order to determ	nine
its distance?				
a) luminosity	b) line broadening	c) mass	d) spectrum	
•	-			

2. The masses of neutron stars