Future of Life in the Solar System

## Future of Life in Solar System

Terraform other planets (Mars most likely)

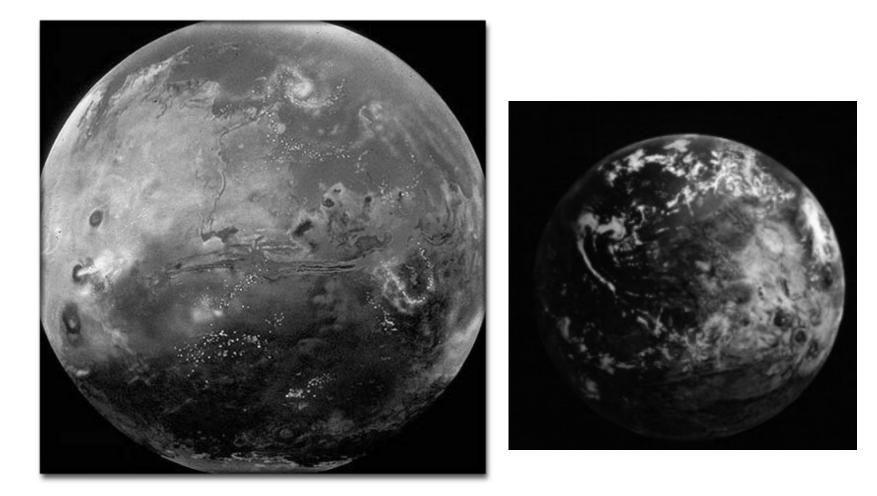
**Space Colonies** 

Solar Power from space

Dyson spheres

Robots

Von Neumann Devices


#### Future of Life in the Solar System

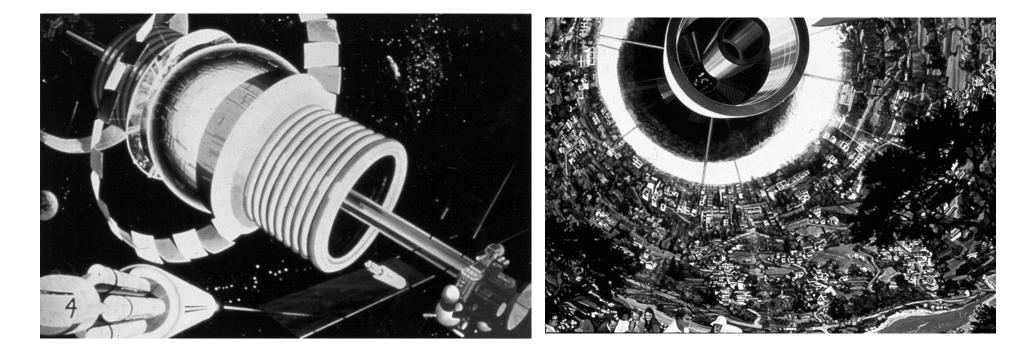
Seed other planets with "bio-engineered organisms"

Use these to make more habitable for humans

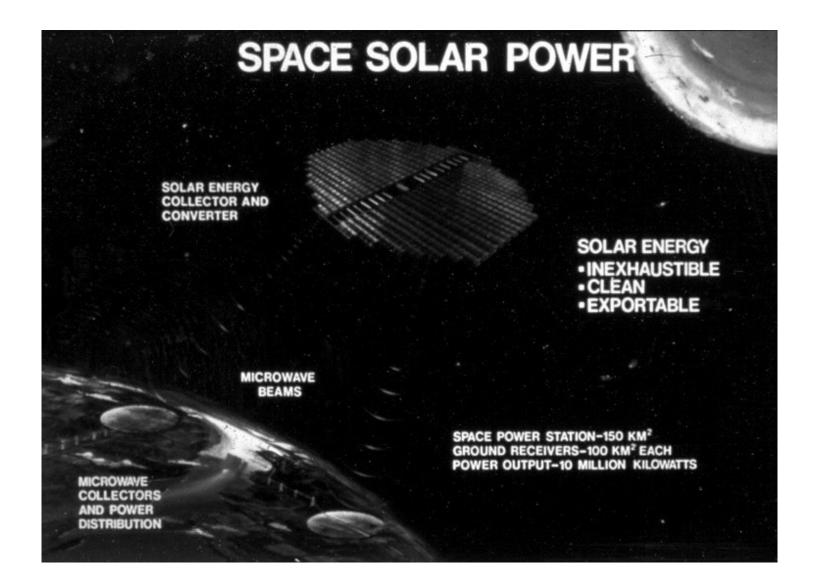
Terraform (need H<sub>2</sub>O, O<sub>2</sub>, O<sub>3</sub>) e.g. Melt polar caps on Mars (10<sup>14</sup> tons of ice) 2500 to 10000 years to build up atm. pressure, get liquid water

## **Terraformed Mars**

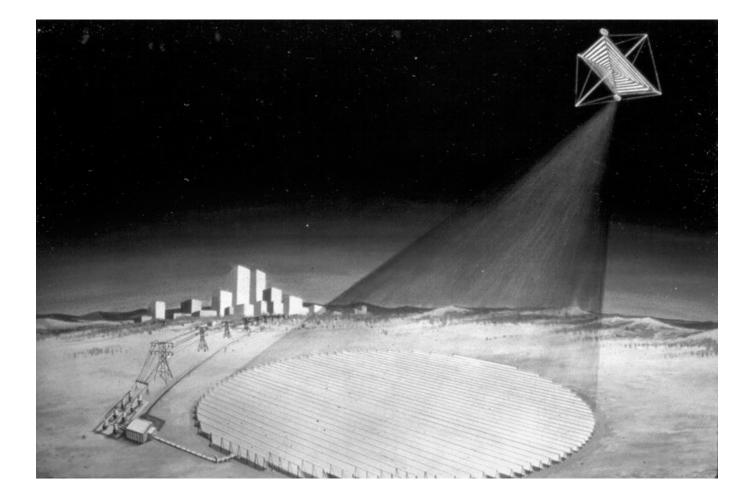



Ocean in northern lowlands covers 25% of planet

## Living in Space to Robots...


Space colonies Solar Power satellites U Dyson sphere (Type II Civilization)

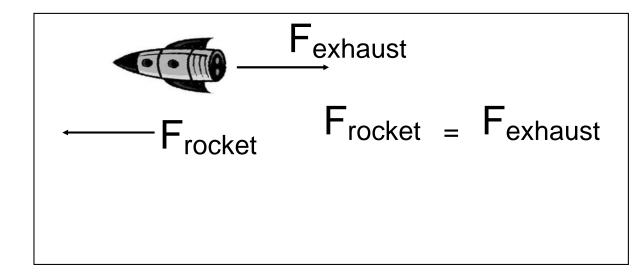
Role of Robots


## Space Colony (Island One)



#### **Solar Power Satellites**




## Solar Power Satellite



## Rockets

Principle:

#### Newton's Third Law



1. Exhaust velocity  $V_e \ (\text{km s}^{-1})$  $V_e \ \propto \ \sqrt{\frac{T}{M}}$ 

# 2. Thrust (Force) $F = \stackrel{\circ}{M} V_e$ (Newtons, Pounds)

$$\stackrel{\circ}{M}$$
 = rate of mass ejected)

3. Mass ratio

 $R_M = Total Mass at Takeoff$ Mass After Fuel Used Up

#### 4. Specific impulse (s.i.)

Thrust(Newtons/kg/sec,Rate of Fuel UsePounds/Pounds/sec = "sec")

A measure of efficiency.

Highest possible s.i. with chemical fuels is < 500

# RocketsFgravFthrustTo take off: Thrust > Weight

To escape gravity  $v > v_{esc} = 11.2 \text{ km s}^{-1}$ (7 miles/sec)

## Rockets

#### Multi-stage Rockets

- Space Shuttle: Mass =  $2 \times 10^6$  kg
- $F_{thrust} = 29 \times 10^6$  Newtons  $R_M = 68$
- s.i. = 455 sec. ~ best possible with chemical fuel

For more adventurous exploitation of Solar System Probably want Nuclear Propulsion Fission could give s.i. =  $1.5 \times 10^6$  sec (in principle, more likely to get 20,000 sec)

## **Current Initiative**

- Human mission to Mars
- Several attempts to get started in past
- Exploration Vision in 2004
  - First return to Moon
  - Then Mars
  - Long-term program needed
  - http://www.nasa.gov/missions/solarsystem/explore\_main.html

## **Evaluating your Drake Equation**

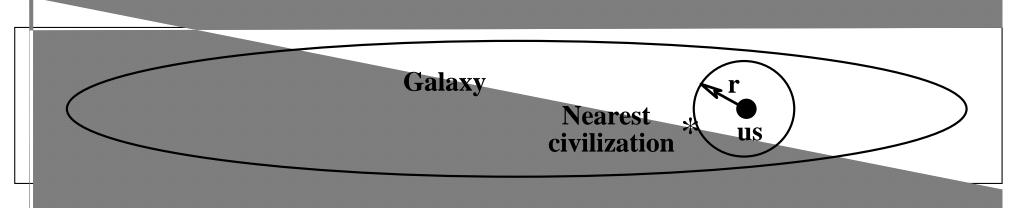
## **Basic Ideas**

- Number of Civilizations in our Galaxy
  - Product of rate of emergence and L
    - Running product gives rate for each step
    - Until L, we have rates
    - Through f<sub>c</sub>, we get "communicable" civilizations
  - Multiplying by L gives the number (N)
    - Assumes "steady state" between birth and death of civilizations

#### Drake Equation:

## $N = R * f_p n_e f_l f_i f_c L$

- N = number of communicable civilizations in our galaxy
- R = Rate at which stars form


f

f<sub>c</sub>

r

- $f_p$  = Fraction of stars which have planetary systems
- n<sub>e</sub> = Number of planets, per planetary system, which are suitable for life
  - = Fraction of life bearing planets where intelligence develops
    - Fraction of planets with intelligent life which develop a technological phase during which there is a capacity for and interest in interstellar communication
      - = Average of lifetime of communicable civilizations
      - = Average distance to nearest civilization

Distance to Nearest Neighbor 1. Assume civilizations spread uniformly but randomly through galaxy



r = radius of imaginary sphere centered on us that touches nearest civilizaztion search vol ∝  $r^3$ 

$$\Rightarrow r = \frac{10^4 \text{ ly}}{\text{N}^{1/3}}$$

## **Distance to Nearest Neighbor**



If N < 8000, r from previous formula is 500 ly About equal to thickness of Galaxy

```
Use cylinder for search vol \propto r^2 h
so r = \frac{5 \times 10^4 \text{ ly}}{\text{N}^{1/2}}
```





|           | R  | <b>f</b> p | n <sub>e</sub> | f <sub>l</sub> | f <sub>i</sub> | f <sub>c</sub> | L              | Ν                   | r              |
|-----------|----|------------|----------------|----------------|----------------|----------------|----------------|---------------------|----------------|
| Estimate  | 50 | 1          | 1              | 1              | 1              | 1              | $5 	imes 10^9$ | $2.5 	imes 10^{11}$ | 1.6 <b>İ</b> y |
| Birthrate | 50 | 50         | 50             | 50             | 50             | 50             | │ │<br>│       |                     |                |
|           |    |            |                |                |                |                |                |                     |                |

2.5 out of 4 stars

If N > 8000,  $r = \frac{10^4 \text{ light years}}{N^{1/3}}$ If N <8000,  $r = \frac{5 \times 10^4 \text{ light years}}{N^{1/2}}$ 

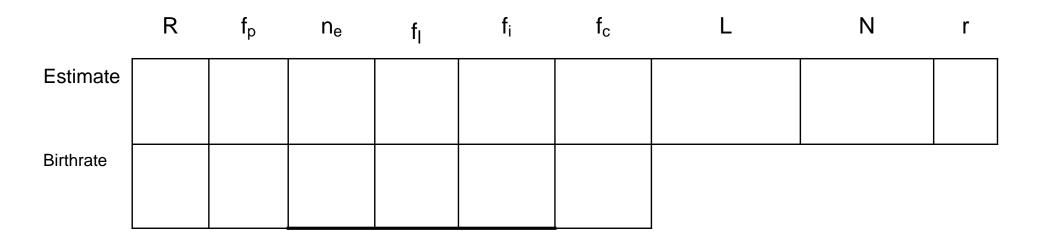
## Angela Angst



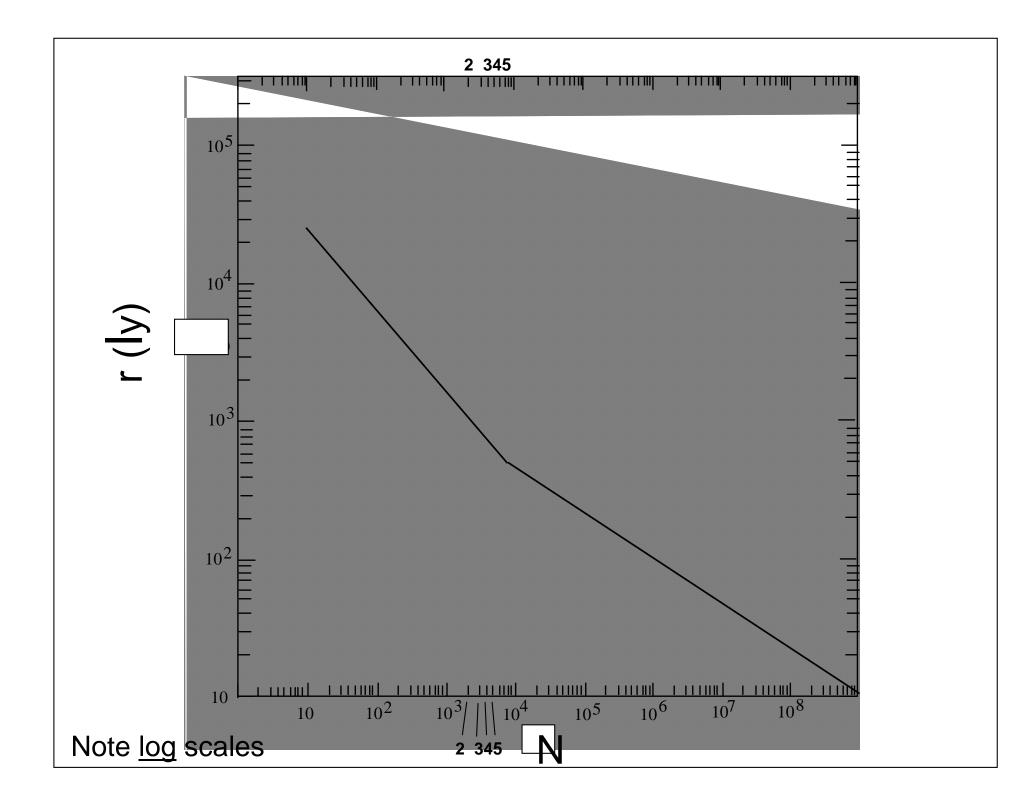
|           | R | <b>f</b> p | n <sub>e</sub> | f <sub>l</sub>       | f <sub>i</sub>       | f <sub>c</sub>     | L   | Ν                  | r |
|-----------|---|------------|----------------|----------------------|----------------------|--------------------|-----|--------------------|---|
| Estimate  | 5 | 0.1        | 0.1            | 0.01                 | 0.01                 | 0.01               | 100 | 5×10 <sup>-6</sup> |   |
|           |   |            |                |                      |                      |                    |     |                    |   |
| Birthrate | 5 | 0.5        | 0.05           | 5 x 10 <sup>-4</sup> | 5 × 10 <sup>-6</sup> | 5×10 <sup>-8</sup> |     |                    |   |
|           |   |            |                |                      |                      |                    |     |                    |   |

Never two civilizations at same time

If N > 8000,  $r = \frac{10^4 \text{ light years}}{N^{1/3}}$ If N < 8000,  $r = \frac{5 \times 10^4 \text{ light years}}{N^{1/2}}$ 




|              | R  | <b>f</b> p | n <sub>e</sub> | f <sub>l</sub>                                             | f <sub>i</sub>                          | $f_{c}$ | L                   | Ν              | r    |
|--------------|----|------------|----------------|------------------------------------------------------------|-----------------------------------------|---------|---------------------|----------------|------|
| Estimate     | 10 | 0.5        | 0.89           | 0.5                                                        | 0.7                                     | 0.6     | 1 × 10 <sup>6</sup> | $9.4	imes10^5$ | 100  |
|              |    |            |                |                                                            |                                         |         |                     |                |      |
| Birthrate    | 10 | 5          | 4.45           | 2.23                                                       | 1.56                                    | 0.94    |                     |                |      |
|              |    |            |                | 1 out of<br>× 10 <sup>5</sup> sta<br>0 × 10 <sup>5</sup> : |                                         |         |                     |                |      |
| If N > 8000, |    |            | r =            |                                                            | light yo<br>N <sup>1/3</sup>            |         | I                   | 0 ~ 10 .       | - 10 |
| If N < 8000, |    |            | r =            | <u>5 ×</u>                                                 | 10 <sup>4</sup> lig<br>N <sup>1/2</sup> | ht yea  | rs<br>-             |                |      |


## Evaluating YOUR Drake Equation

- Almost no answers are wrong
  - It must be possible for us to exist
  - N must be no greater than the number of stars in the Galaxy
    - May imply limit on L
- Ways to evaluate:
  - Plug into equations
  - Use calculator on web
    - <u>http://www.as.utexas.edu/astronomy/education/drake/drake.html</u>
  - Ask us for help

#### Your Drake Equation



If N > 8000,  $r = \frac{10^4 \text{ light years}}{N^{1/3}}$ If N < 8000,  $r = \frac{5 \times 10^4 \text{ light years}}{N^{1/2}}$ 



#### Points to bear in mind

- r is based on assuming spread uniformly
   Could be less in closer to center of MW
- r is based on averages
  - Could be closer but unlikely
- r is less uncertain than N
- Since signals travel at c, time = distance in ly
- If L < 2r, no two way messages