
The Transition to Life

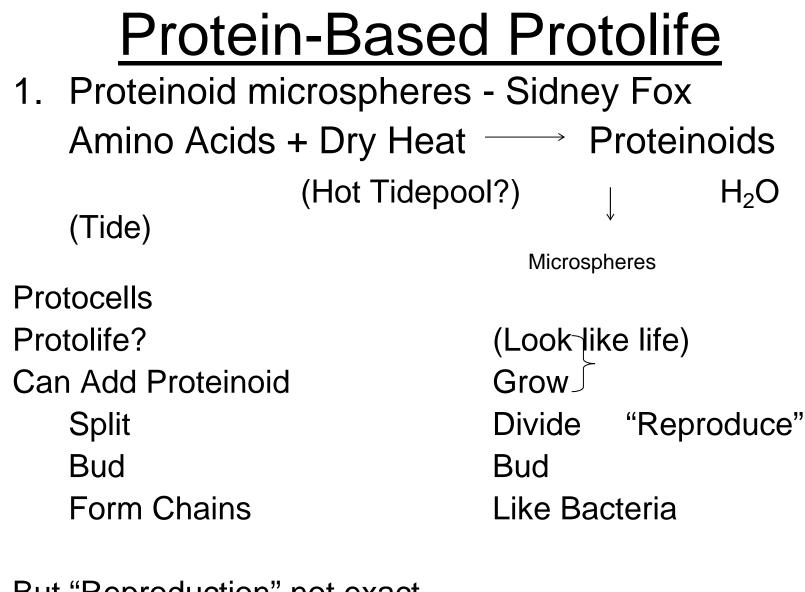
Based on Simplest Life Now:

Need:

- 1. Nucleic Acids Information
- 2. Proteins
- 3. Lipids
- Carbohydrates (Pigments)

Replicatable

Enzymes (Catalysts) Membranes (Enclosure) Energy Storage (Energy Conversion)


Too much to ask of chemical evolution \Rightarrow Protolife?

<u>Protolife</u>

- "Virus" Free living but equivalent in complexity
 Protein + Nucleic Acid + Supply by Environment Genetic Code
- 2. Protein Protolife Protein → Self Replication?
- 3. Nucleic Acid Protolife RNA \longrightarrow Self Catalysis?

4. Something Else
Minerals
Clay Layers
Mineral - Molecule
Pyrite
Thioesters

Genetic Takeover ? \longrightarrow RNA \longrightarrow DNA

But "Reproduction" not exact Later incorporate Nucleic Acids Proteinoid \rightarrow Cells \longrightarrow Genes

Nucleic Acid Based Protolife

 $\begin{array}{l} \mathsf{RNA} & \longrightarrow \; \mathsf{Genes} & \rightarrow \mathsf{Protein} & \longrightarrow \; \mathsf{Cells} \\ \mathsf{Self-replicating} \; \mathsf{RNA} \; \mathsf{molecules} \\ \mathsf{Experiment} \; \mathsf{by} \; \mathsf{Sol} \; \mathsf{Spiegelman} \\ \mathsf{RNA} \; \mathsf{from} \; \mathsf{Q}_\beta \; \mathsf{Virus} \; \mathsf{-} \; \mathsf{parasite} \; \mathsf{on} \; \mathsf{bacteria} \\ \mathsf{Injects} \; \mathsf{RNA} \; \mathsf{-} \; \mathsf{Bacterium} \; \mathsf{makes} \; \mathsf{replicase} \\ & \mathsf{Enzyme} \; \mathsf{to} \; \mathsf{Replicate} \; \mathsf{RNA} \\ \mathsf{RNA} \; \mathsf{multiplies}, \; \mathsf{using} \; \mathsf{activated} \; \mathsf{nucleotides} \; \mathsf{in} \end{array}$

Bacterium new viruses

In Test Tube: Template RNA, Replicase, Activated Nucleotides (ATP, CTP, GTP, UTP)

- ⇒ RNA copied <u>without</u> machinery of cell
- Variation: <u>No</u> template RNA Replicase made RNA from nucleotides Protein

Manfred Eigen - further experiments with RNA in test tube: Mutant RNA strands compete Degrade to smallest (~ 200 nucleotides) RNA that replicase could recognize (Monster - Selfish RNA)

RNA can do self-catalysis in some cases Could this have led to self replication?

Eigen scenario

- A replicating RNA molecule forms by chance (random replicator - not a gene) ribozyme (catalyst, made of RNA)
- 2. Family of **similar** RNA's develops (quasispecies)
- Connection to proteins

 (quasispecies specialize to make parts of protein)

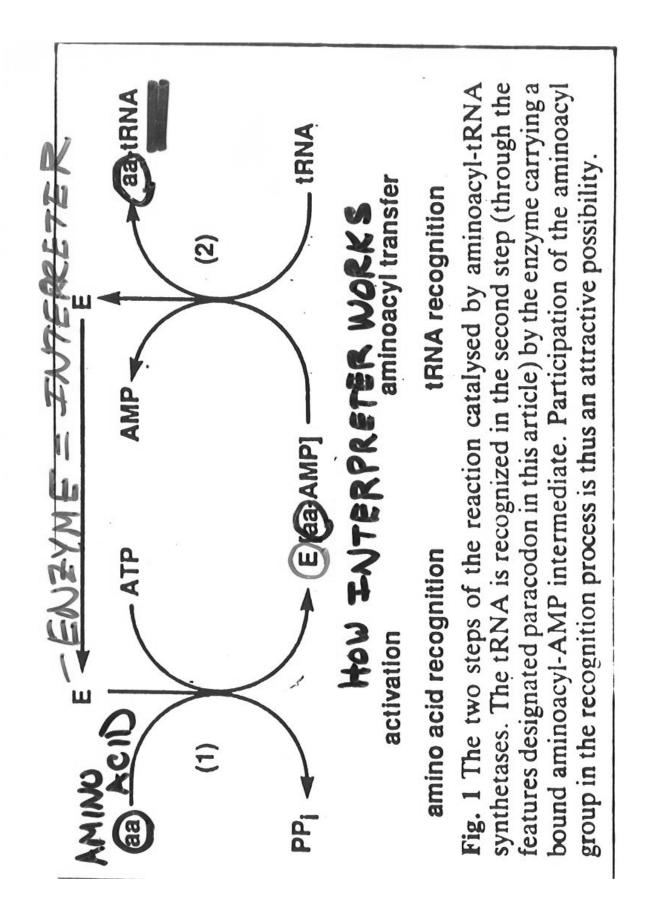
- 4. Complex interactions (hypercycles)
- 5. Use lipids to make protocells
- 6. Competition leads to biological evolution

Problems with Nucleic Acid First Scenario

- 1. Hard to get monomers
- 2. Unlikely to link correctly
- 3. Need existing proteins and lipids
- 4. Hypercycles subject to instabilities
 N = size of molecular population
 If N small
 If N large

 Population Collapse
 Selfish RNA
 Short Circuit

 $A \longrightarrow B$ \downarrow \downarrow


 If $B \rightarrow D$ Short Circuit
 $D \leftarrow C$

 \Rightarrow Only narrow range of sizes works

The Origin of the Genetic Code

- We need more than either protein or RNA protolife
- Need interaction via genetic code
- Need translation
- Consider first a scenario by R. Shapiro

Shapiro's Fable The case for the "chicken" Protein first \Rightarrow replication problem "interpreters" aminoacyl tRNA **tRNA** synthetases Match tRNA & Amino acids Could an earlier version have copied proteins **Proto-interpreter** directly?

1. Early Evolution: Start with 4-6 amino acid

types, gradually add more enzymes increase in size and catalytic

- 2. Power First use of phosphate as energy? (ATP) or sugar-phosphate chains for construction (Teichoic acids in membranes of some bacteria) (partial Q_{β} replicase)
- Bases added for structure
 Support for protein synthesis → ribosome

- 4. Begin to copy RNA (Full Q_{β} replicase) Natural selection better ribosome
- 5. Specialized, Short RNA aided attachment of

amino acids to proteins; became tRNA

- Then mRNA to align tRNA's now a separate genetic system that evolves
- 7. DNA developed from RNA

Shapiro dates last step to prokaryote -eukaryote split (different ways of storing DNA info)

Tests:

- 1. Synthesize in lab? Not possible yet.
- 2. Molecular archaeology vestigial ability of

interpreters to recognize amino acids in proteins

3. Survivors of protein era? prions?

Support for the "chicken"

1. 1988 discovery that interpreter does not

use tRNA codon to recognize correct tRNA

(in some cases) $\sim 1/2$

- instead a single base pair at the other end of tRNA
- \Rightarrow simpler, older code second genetic code
- ⇒ connection of interpreter and tRNA more primitive than current code

2. Dyson modeling of molecular "populations" Transition from disorder to order

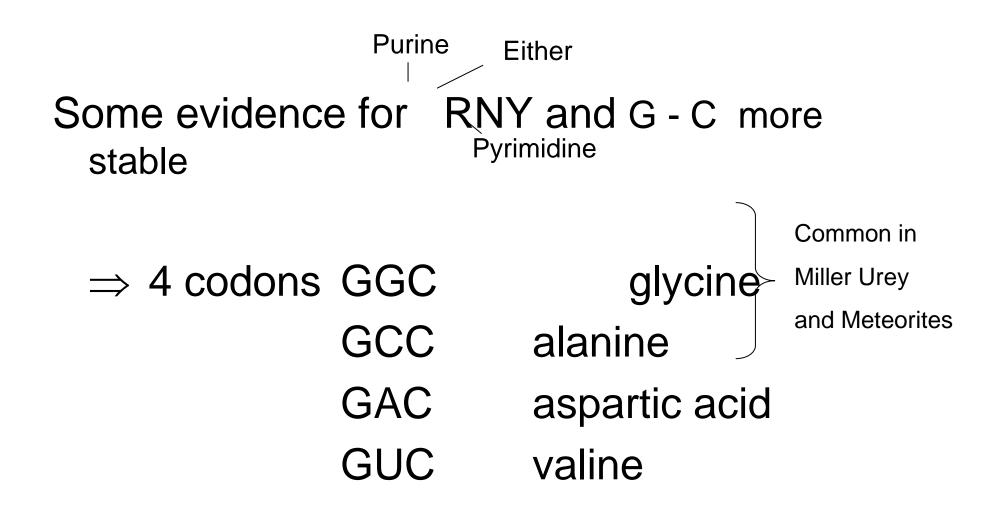
(non-life) (life)

Finds number of monomer types likely to be 9 - 11 (ok if used ~ 1/2 of modern proteins) But nucleotides (only 4) - not enough Favors protein first

The Egg Strikes Back

Other work shows some RNA can catalyze Non-RNA reactions

- RNA in ribosome appears to be what catalyzes peptide bond formation Noller, et al. 1992, *Science*, **256**, 1416
- 2. RNA "ribozyme" catalyzes reactions between amino acids and tRNAs

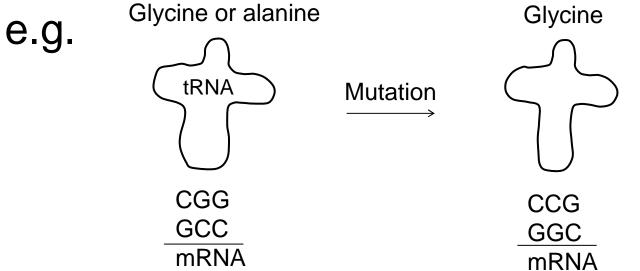

First "interpreter" may have been RNA Piccirilli, et al. 1992, *Science*, **256**, 1420

Origin of the Genetic Code

Crucial step in any theory

Allows communication Nucleic Acids ← Proteins

Early versions probably coded fewer amino acids - less specific



Others added later

Evolution of Genetic Code

Gaining specificity

If early tRNAs carries more than 1 kind of amino acid

Evidence that code has evolved Freeland, et al. Tested 10⁶ other codes Only one better at minimizing bad effects of

mutations

 \Rightarrow Natural Selection

Still Evolving

Some organisms have slightly different codes in

mitochondria or in nucleus

Other Ideas

- Neither the chicken nor the egg came first
- Transitional forms that were later discarded

Or was it the "egkin"?

Some experiments with peptide nucleic acid (PNA).

PNA: <u>Peptide</u> backbone with bases

Can act as template for polymerization of RNA From activated nucleotides (Böhler, et al., *Nature*, **376**, 578 & comments by Piccirilli, pg. 548 17 Aug. 1995

PNA could be simpler to form under prebiotic conditions Main point is that a simpler thing (not necessarily PNA) could have preceded RNA

Membranes

- Membranes provide enclosure
 Also fundamental for metabolism
- Membranes never arise from scratch
 - Always passed down and added to
 - All derived from ancestral cell
- T. Cavalier-Smith proposes membranes
 - Plus nucleic acid formed "ob-cell"
 - Merger of 2 ob-cells formed first cell

Summary of Proto-Life Development

Ribose Sugars Bases Phosphate	Short strands of RNA	Affinity for complementary bases	RNA adapts proteinoids as needed	DNA and RNA
Ribose Sugars Bases Phosphates Amino Acids	Short strands of RNA + amino acids	Affinity for complementary bases	Separation of nucleic acids and protein parts	Disappears
Bases Amino Acids	Short strands of PNA's	Affinity for complementary bases + ease of peptide bonding	Separation of proteins and nucleic acids	Disappears
Amino Acids	Proteinoids	¢.	Proteinoids + RNA?	Proteins
Monomers	Polymerization	Replication	Pre-life	Life
	Amino Acids Bases Ribose Sugars Amino Acids Bases Phosphates Amino Acids	Amino AcidsBasesRibose SugarsAmino AcidsBasesBasesAmino AcidsPhosphatesAmino AcidsShort strands ofProteinoidsShort strands ofPNA'sRNA + aminoacidsacids	Amino AcidsBasesEAmino AcidsBasesBasesAmino AcidsBasesProteinoidsShort strands ofProteinoidsShort strands ofProteinoidsShort strands ofPoteinoidsShort strands ofProteinoidsShort strands ofProteinoidsProteinoidsProteinoidsProteinoidsProteinoidsProteinoidsProteinoidsProteinoidsProteinoidsProteinoidsProteinoidsProteinoidsProteinoids <t< th=""><th>Amino AcidsBasesEAmino AcidsBasesBasesAmino AcidsBasesProteinoidsShort strands ofProteinoidsShort strands ofPNA'sShort strands ofPNA'sRNA + aminoacidsacidsPNA'sAffinity forcomplementarycomplementarybases + ease ofbasespeptide bondingSeparation ofRNA?Roteins andnucleic acidsprotein parts</th></t<>	Amino AcidsBasesEAmino AcidsBasesBasesAmino AcidsBasesProteinoidsShort strands ofProteinoidsShort strands ofPNA'sShort strands ofPNA'sRNA + aminoacidsacidsPNA'sAffinity forcomplementarycomplementarybases + ease ofbasespeptide bondingSeparation ofRNA?Roteins andnucleic acidsprotein parts

Alternative Ideas

Alternative Ideas

A different initial genetic substance + genetic takeover

e.g. clay life

<u>Panspermia</u> Various versions

Creationism

<u>Clay Life</u>

A.G. Cairns - Smith

Silicate Life? Early Genetic Material O = Si = O but O can make another bond instead $O_{instead}$ great variety of minerals Layers - clay

Also occasional impurity (Al, Mg, ...)
Can grow by adding dissolved material
Tends to copy pattern of impurities in adjacent layers - reproduction?

Defects - different impurity, ... (mutations?) Sheets can separate - move - and then "reproduce"

AdvantagesProblemClay clearly presentHow to get toSimpler genetic structurelife as we know itCrystal growth occurs naturally

Clay Life $\xrightarrow{?}$ Life

Clay life begins to synthesize, use "organic"

[carbon] molecules

Clays do have some catalytic activity

Genetic takeover

organics — protein/RNA mechanisms

Clay discarded

<u>Tests</u>

- 1. Surviving clay life unlikely
- 2. New clay life maybe in some places
- 3. Demonstrate in lab

Focus on Energy

- G. Wächtershäuser
- Inorganic organic connection
- FeS₂ (Iron pyrite)

Attracts negatively charged molecules Surface catalysis provides energy via formation from

- $FeS + H_2S$
- Scene is hot sulfur vents on sea floor
- Some recent successes in simulations
- Amino acids formed peptide bonds

Panspermia

- Life arose elsewhere and was delivered here
 - Original idea was bacterial spores
 - Hoyle and Wickramasinghe
 - Life originates on dust grains, comets, ...
 - May be revived (meteorites from Mars)
- Directed panspermia
 - Crick and Orgel (tongue in cheek)
 - Earth seeded by intelligent ET

Exotic Life Forms?

Antidote to Earth Chauvinism

- 1. Different organic molecules (e.g., PNA) Rebek's variation self replication possibility of life based on other polymers
- 2. Not based on Carbon
 Silicon (Si) instead of Carbon?
 (also 4 bonds)
 & more (135 ×) more abundant on Earth

Negatives:

- a. C C bond $2 \times$ stronger than Si Si
- b. Si O stronger than Si Si

 \rightarrow silicates, not ... Si - Si - Si ...

- c. C forms multiple bonds (e.g. $C \equiv N$) Si rarely dies
- d. $C + O \longrightarrow CO \text{ or } CO_2$ (gas further reacts) Si + O SiO₂ - silicate rocks

3. Other Solvents

Earth: Liquid water 273-373 K

Alternatives:		T _{freeze}	T_{boil}
Ammonia	NH_3	195	240
Methyl Alcohol	CH ₃ OH	179	338
Methane	CH_4	91	109
Ethane	C_2H_6	90	184

Water is better solvent

Also better for temperature regulation But others could play a role in colder zones extend CHZ?

4. Non-chemical life?

Disembodied intelligence Black cloud life?

Other forces Strong nuclear force?

 $\tau \sim 10^{-15} \, s$

Gravity?

Estimates for f₁

- Possible range is very large
 Perhaps 10⁻⁶ (one in a million) to 1 (all)
- Arguments for large value
 - Life part of overall evolution in complexity
 - Arises naturally from interplay of forces

Estimates for f₁

- Arguments for small value
 - May need more than liquid water
 - Large tides, so large moon
 - Dry land (for polymerization)
 - Life may be a fluke
 - A rare statistical event

Can we estimate f_i from early origin of life? Very ancient microfossils (now

- disputed)
- ⇒ Life arose as early as 3×10^9 yr ago [soon after end of heavy bombardment]

Lineweaver & Davis argued: Early origin $\Rightarrow f_1 > 0.33$ For suitable planets older than 1×10^9 yrs.

Statistics from <u>one</u> example!