Star Formation

Some Details and Rate

Estimate of Average Star Formation Rate (R_{*})

- $R_{*} = \frac{\# \text{ of stars in galaxy}}{\text{lifetime of galaxy}} = \frac{N_{*}}{t_{\text{gal}}}$
- N_* : Count them? No

Use Gravity (Newton's Laws)

Sun orbiting center of galaxy at 250 km s⁻¹ (155 miles per second)

Kinetic energy = $\frac{1}{2}$ gravitational potential energy

$$\frac{1}{2} M_{\odot} v^{2} = \frac{1}{2} \frac{G M_{g} M_{\odot}}{R_{g}} \leftarrow Distance of Sun from center of galaxy$$
$$\frac{R_{g} v^{2}}{G} = M_{g}$$

Estimate of Average Star Formation Rate (R*)

(R_g = 25,000 ly)
$$\rightarrow$$
 M_g =1.0 × 10¹¹ M _{\odot}

Add stars outside Sun's orbit $\rightarrow M_g \ \underline{\sim} \ 1.6 \times 10^{11} \ M_{\odot}$

$$N_* \simeq \frac{M_g}{\text{Avg. mass of star}} = \frac{1.6 \times 10^{11}}{0.4} = 4 \times 10^{11}$$

$$T_{gal} \simeq 10^{10} \text{ yr}$$
 (studies of old stars)

$$R_* \simeq \frac{4 \times 10^{11}}{10^{10}}$$
 stars = 40 stars per year (5 - 50)

Current Star Formation

- Occurs in gas with heavy elements
 - Molecules and dust keep gas cool
 - Radiate energy released by collapse
 - Stars of lower mass can form
 - Mass needed for collapse increases with T
- Star formation is ongoing in our Galaxy
 - Massive stars are short-lived
 - Star formation observed in infrared

Artist's Conception

Features: Dusty envelope Rotation Disk Bipolar outflow

R. Hurt, SSC

The Protostar

- Evolution of the collapsing gas cloud
 - At first, collapsing gas stays cool
 - Dust, gas emit photons, remove energy
 - At n ~ 10^{11} cm⁻³, photons trapped
 - Gas heats up, dust destroyed, pressure rises
 - Core stops collapsing
 - The outer parts still falling in, adding mass
 - Core shrinks slowly, heats up
 - Fusion begins at T ~ 10^7 K
 - Protostar becomes a main-sequence star

The Disk

The Star (AU Mic) is blocked in a coronograph. Allows you to see disk. Dust in disk is heated by star and emits in infrared.

Angular Momentum

- Measure of tendency to rotate
 J = mvr
- Angular momentum is conserved
 - -J = constant
 - As gas contracts (r smaller), v increases
 - Faster rotation resists collapse
 - Gas settles into rotating disk
 - Protostar adds mass through the disk

The Wind

- Accretion from disk will spin up the star
 - Star would break apart if spins too fast
- Angular momentum must be carried off
- The star-disk interaction creates a wind
- The wind carries mass to large distances
 - J = mvr, small amount of m at very large r
 - Allows star to avoid rotating too fast
- Wind turns into bipolar jet
 - Sweeps out cavity

The Bipolar Jet

Embedded Outflow in HH 46/47

Spitzer Space Telescope • IRAC Inset Visible Igne (DSS) sec2003-061

NASA / JPL-Caltech / A. Noriega-Crespo (SSC/Caltech)

Studying the Disk

Robert Hurt, SSC

Planet Detection

Estimating f_p

Can We See Them?

- Not yet, but there are plans...
 - 3 recent claims, but planets very far from star, so some doubts
- Problem is separating planet light from star light
 - Star is 10⁹ times brighter in visible light
 - "Only" 10⁶ times brighter in infrared

Planet is Much Fainter than Star

Indirect Detection

Wobbling star

Detect effect of planet on star (both orbit around center of mass)

Large planet will make a star "wobble"

In plane of sky observe position shift

Along our line of sight

Observe Doppler Shift

Star and Planet Orbit Center of Mass

The Astrometric Technique

Measure stellar position (angle) accurately - see wobble compared to more distant stars

The Sun as viewed from 10 pc (~30 ly)

ly

Planet	M _P	R	Р	V*	Θ at 10 pc
	(M_J)	(AU)	(years)	$(m s^{-1})$	(mas)
Mercury	1.74E-4	0.387	0.241	0.008	6.4E-6
Venus	2.56E-3	0.723	0.615	0.086	1.8E-4
Earth	3.15E-3	1.000	1.000	0.089	3.0E-4
Mars	3.38E-4	1.524	1.881	0.008	4.9E-5
Jupiter	1.0	5.203	11.86	12.4	0.497
Saturn	0.299	9.54	29.46	2.75	0.273
Uranus	0.046	19.18	84.01	0.297	0.084
Neptune	0.054	30.06	164.8	0.281	0.156
Pluto	6.3E-6	39.44	247.7	3E-5	2.4E-5

The Spectroscopic Method

- Relies on Doppler Effect
- Motion of star towards and away from us
- Almost all planets around other stars found by this method so far

The Spectroscopic Technique

Measure velocity, not position, of star

ly

Planet	M _P	R	Р	V*	Θ at 10 pc
	(M_J)	(AU)	(years)	$(m s^{-1})$	(mas)
Mercury	1.74E-4	0.387	0.241	0.008	6.4E-6
Venus	2.56E-3	0.723	0.615	0.086	1.8E-4
Earth	3.15E-3	1.000	1.000	0.089	3.0E-4
Mars	3.38E-4	1.524	1.881	0.008	4.9E-5
Jupiter	1.0	5.203	11.86	12.4	0.497
Saturn	0.299	9.54	29.46	2.75	0.273
Uranus	0.046	19.18	84.01	0.297	0.084
Neptune	0.054	30.06	164.8	0.281	0.156
Pluto	6.3E-6	39.44	247.7	3E-5	2.4E-5

What We Can Learn

1. There is a planet

(If not a mistake)

2. The orbital period (P)

(The time for pattern to repeat)

3. The orbital radius

 $r^3 \propto M_* P^2$ (Kepler's Third Law)

4. Lower limit to planet mass (M_{planet})

Conservation of momentum \longrightarrow

$$M_{Pl} \ge \frac{M_* V_* P}{2\pi r}$$

= if we see orbit edge-on
> if tilted

Comparison of Search Methods

Advantages

<u>Astrometric</u> Big Planet Big Orbit Small Star Nearby Star Spectroscopic Big Planet Small Orbit Small Star

--

Edge-on Orbit

First planet found with this method in January 2003; 9 detected as of January 2006

Microlensing: Light from more distant star is focused by gravity of nearer star passing in front

Planets from the Transit Method

OGLE-TR-10

Light curve

Planet Detected by Microlensing

Sharp spike indicates second lens. Mass of second lens only 8 x 10^{-5} as massive as star. Most likely mass of planet is 5.5 M_{earth} and separation from star is 2.6 AU. Most likely star is low mass (0.22 M_{sun}).

This method can detect very low mass planets, but they are onetime events. Cannot follow up.

OGLE 2005-BLG-235Lb, announced 1/25/06 http://www.eso.org/outreach/press-rel/pr-2006/pr-03-06.html

Current Statistics (Jan. 2006)

- Based on Extrasolar Planets Encyclopedia
 <u>http://www.obspm.fr/encycl/encycl.html</u>
- 170 Planets in 147 systems
- 17 with multiple planets
- Most planets in one system is 4 (55 Cancri)
- Least massive
 - $-M = 0.023 M_{Jup} = 7 M_{earth}$ (Gliese 876)
 - Claim of 5.5 M_{earth} (Microlens 1/25/06)

Estimating f_p

• Maximum? $f_p \sim 1$

- All young stars may have disks

- Binaries?
 - Can have disks, but planet formation?
 - Even if form planets, orbits may not be stable
 - If reject binaries, $f_p < 0.3$

Estimating f_p

- Minimum?
 - Based on success rate of searches $(n_{found}/n_{searched})$
 - Estimates now up to 5% ($f_p > 0.05$)
 - Note larger than 0.02 given in book
 - Extrapolate trends to finding
 - Smaller planets, larger orbits, ...
 - Estimates range from 0.11 to 0.25
- Allowed range: $f_p = 0.05$ to 1.0
 - Explain your choice!
 - Include/exclude binaries?

PLANETS AROUND NORMAL STARS

MERCURY VENUS RATH MASS 0 0.47 MJup 51 Pog 24 MJup 0 0.47 MJup 51 Pog 24 MJup 0 0.47 MJup 51 Pog 24 MJup 0 0.84 MJup 55 Cancri 2 0 0.84 MJup 55 Cancri 2 0 0.84 MJup 55 Cancri 2 0 0.84 MJup 70 Ut 1 0 0.68 MJup 70 Ut 1 0 0.60 MJup 70 Ut 1 0 1.0 MJup 16 Cyg B 1 1 0 1.1 MJup 1 1 1		INNI	ER SOLAR SYSTEM	
(1) 0.47 MJup 51 Peg 24 MJup (1) 0.47 MJup 55 Cancel 25 Cancel (1) 0.84 MJup 55 Cancel 128 MJup (1) 0.88 MJup 78 MJup 78 MJup (1) 0.68 MJup 70 VIr 17 MJup (1) 0.11 MJup 16 Cyg B 0.17 MJup (1) 0.11 MJup 16 Cyg B 0.17 MJup	MERCURY VI	enus	© ○ Earth Maf	8
0.47 MJup 51 Peq 0.04 MJup 55 Cancri 0.08 MJup Tau Bootts 0 0.08 MJup 0 0.06 MJup 0 0.06 MJup 0 0.07 MJup 0 0.07 MJup 0 10 MJup 0 10 MJup 0 10 MJup 0 10 MJup			47 UMa	2.4 MJup
0.84 MJup 55 Cancri 0.84 MJup Tau Bootis 0.84 MJup Tau Bootis 0.84 MJup Upsilon Andromedae 0.9.68 MJup 70 Vir 0.9.68 MJup 70 Vir 0.9.64 MJup ND 114762 0.9.11 MJup 16 Cvg B 0.9.11 MJup Rho Cr B 0 11 MJup	🔵 🕢 0.47 MJup		51 Peg	
Image: Set Muture Tau Bootis Image: Set Muture Upsilon Andromedae Image: Set Muture 70 Vir Image: Set Muture 16 Cyg B Image: Set Muture 10 Miture Image: Set Muture 10 Miture	0.84 MJup		55 Cancri	
• 0.68 MJup Upsilon Andromedae • 0.68 MJup 70 Vlr • 0 • 6.6 MJup • 0 • 6.6 MJup • 0 • 10 MJup • 1 • 17 MJup	gulup 3.8 MJup		Tau Bootis	
O G.G. MJup 70 VIr Image: Second state Image: Second state	dnJub 💿 🕕	ŋ	silon Andromedae	
Image: Mage of the state of the st	6.6 M	dul	70 VIr	
16 Cyg B 1.7 MJup 0 1.1 MJup 1 1	10 MJul	a	HD 114762	
0 1.1 MJup Rho Cr B 1.2 1.2			16 Cyg B	🕐 1.7 MJup
0 1 1 12	1.1 MJup	•	Rho Cr B	
	0		1	12
	Courtesy .	San Franc	isco State University Astronom	ny Department

The Upsilon Andromedae Syster	stem
B C 0.83 AU 2.5 AU 0:06 AU 0.83 AU 2.5 AU 4.6 day orbit 242 day orbit 3.5 year orbit 75% Jupiter's Mass Twice Jupiter's Mass 4x Jupiter's Mass	-
Our Inner Solar System	
MercuryVenusEarthMars0.39 AU0.73 AU1.00 AU1.54 AU89 day orbit228 day orbit1 year orbit1.9 year orbit	
© Harvard-Smithsonian CIA (A. Conios), 1999 -	

Artist's conception of the view from the outmost planet of three in Upsilon Andromedae

Copyright Lynette Cook used with permission

http://www.extrasolar.spaceart.org

Artist's conception of Transit of HD209458

Copyright Lynette Cook used with permission

http://www.extrasolar.spaceart.org

Artist's conception of 47 U ma "view" from Moon of the Second Planet

Copyright Lynette Cook used with permission

http://www.extrasolar.spaceart.org

Implications of New Planets

Planets more massive than Jupiter <u>can</u> form around stars like the Sun.

Large Planets can form much <u>closer</u> to a star than Jupiter (or move there)

Does this mean we are unusual and our ideas about other planetary systems are just "solar system chauvinism"?

Not necessarily.

The ones found so far are the "easy" ones. (Big planets close to a star) Now there are many more with lower masses than higher masses.

Too early to say that we are unusual.

Number of planets for different masses

Future Prospects

Direct detection (and study) of Earth-like planets ~ 2015 <u>Terrestrial Planet Finder (TPF)</u> Darwin (Europe)

Astrometric Method GAIA ~ 2010 MJ Planets out to 600 *ly.*

Further Spectroscopic Searches

Transits

Kepler (~ 2007)

Monitor 100,000 stars for 4 years

"Hundreds of Terrestrial Planets"

Direct Detection in Future

- Terrestrial Planet Finder (TPF)/Darwin
 - TPF-C Visible light coronagraph (~2014)
 - TPF-I Infrared interferometer (~2020)
- Goal is to detect earth-mass planets
- And to see what gases in atmosphere

– Suitable for life?

http://planetquest.jpl.nasa.gov/TPF/tpf_index.html

TPF Concepts

TPF-I Infrared Interferometer (2020)

TPF-C Visible light coronagraph (2014)

Spectroscopy of atmosphere

Planet Detection Methods

Michael Perryman, Rep. Prog. Phys., 2000, 63, 1209 (updated November 2004) [corrections or suggestions please to michael.perryman@esa.int]

