Cosmic Evolution, Part II Heavy Elements to Molecules

#### Heavy elements $\rightarrow$ molecules

#### First a review of terminology:





Molecule: Repulsive ~ Attractive

More delicate than atoms, can be <u>much</u> more complex



(Room Temperature)

## Questions

- Why is room temperature around 300 K?
- How commonly is this temperature found in the Universe?

#### **Conventions:** H - H $CO_2$ O = C = O $H_2$ **Double Bonds** Bond Maximum # of Bonds: 1 Η 2 $\bigcirc$ Ν 3 4 С

Carbon very versatile  $\rightarrow$  Complex chemistry

## Interstellar Molecules

Exist as gas (individual molecules)A few known in 1930'sMany more since 1968 - Radio astronomy

Rotation

Radio Telescope

Vibration J MMMMM



**Optical Telescope** 

#### How we detect Interstellar Molecules

Radio Spectroscopy (Mostly  $\lambda \sim 1-3$  mm) + Precise knowledge of wavelengths for different molecules



#### Appendix 2

#### Interstellar Molecules

|           | Species                       | Name                | Speci                         |
|-----------|-------------------------------|---------------------|-------------------------------|
|           | H <sub>2</sub>                | molecular hydrogen  | 002                           |
|           | C <sub>2</sub>                | diatomic carbon     | OCS                           |
|           | CH                            | methylidyne         | SO <sub>2</sub>               |
|           | CH <sup>+</sup>               | methylidyne ion     | SiC <sub>2</sub>              |
|           | CN                            | cvanogen            | SiCN                          |
|           | 00                            | carbon monoxide     | AICN                          |
|           | CO+                           | carbon monoxide ion | C <sub>2</sub> S              |
|           | CS                            | carbon monosulfide  | C20                           |
|           | OH                            | hydroxyl            | C3                            |
|           | HC1                           | hydrogen chloride   | MgCN                          |
|           | NH                            | •                   | MgNO                          |
|           | NO                            | nitric oxide        | NaCN                          |
|           | NS<br>SiC                     | nitrogen suinde     |                               |
|           | SiC                           | silicon monoride    | C <sub>2</sub> H <sub>2</sub> |
|           | SiS                           | silicon sulfide     | C <sub>1</sub> H              |
|           | SiN                           | silicon nitride     | H <sub>2</sub> CO             |
|           | SO                            | sulfur monoxide     | H <sub>2</sub> CN             |
|           | PN                            |                     | HC2N                          |
|           | CP                            | •                   | NH1                           |
|           | SO <sup>+</sup>               | sulfoxide ion       | HNC                           |
|           | NaC1                          | sodium chloride*    | HOCC                          |
|           | AICI                          | aluminum chloride*  | IIOI                          |
|           | KC1                           | potassium chloride* |                               |
|           | AIF                           | aluminum fluoride*† | CoN                           |
|           | FeO                           | iron monoxide       | C                             |
|           | HF                            |                     | C15                           |
|           | SH                            |                     | Hacs                          |
|           | ** +                          |                     | 11/CU                         |
|           | H <sub>3</sub> <sup>+</sup>   | protonated hydrogen | H3U                           |
|           | C <sub>2</sub> H              | cthynyl             | 5103                          |
|           | CH <sub>2</sub>               | methylene T         | CH                            |
|           | HUNC                          | hydrogen cyanide    | Calla                         |
|           | HCO                           | formul              | Hacc                          |
|           | (UCOt                         | formul in a         | HCOC                          |
| Molecular | HCO                           |                     | CH <sub>2</sub> C             |
| lana      | HCS                           | Unicionary ion      | HCIN                          |
| IONS      | HOCT                          | isoformyl ion †     | HNC                           |
|           | N <sub>2</sub> H <sup>+</sup> | protonated nitrogen | CH <sub>2</sub> C             |
|           | HNO                           | nitroxyl            | NH <sub>2</sub> C             |
|           | H <sub>2</sub> O              | water               | CH <sub>2</sub> N             |
|           | H2S                           | hydrogen sulfide    | HC2N                          |
|           | H2N                           | hydrogen nitride    | CH                            |
|           | N20                           | nitrous oxide       |                               |

| Species                       | Name                    |
|-------------------------------|-------------------------|
| 002                           | carbon dioxide          |
| OCS                           | carbonyl sulfide        |
| SO <sub>2</sub>               | sulfur dioxide          |
| SiC <sub>2</sub>              | silicon dicarbide*      |
| SiCN                          |                         |
| AICN                          |                         |
| C <sub>2</sub> S              |                         |
| C <sub>2</sub> O              | dicarbon monoxide †     |
| C3                            | triatomic carbon*       |
| MgCN                          | magnesium cyanide       |
| MgNC                          | magnesium isocyanide"   |
| NaCN                          | sodium cyanide*         |
|                               |                         |
| C <sub>2</sub> H <sub>2</sub> | acetylene               |
| C <sub>3</sub> H              | propynylidyne (l and c) |
| H <sub>2</sub> CO             | Iormaldehyde            |
| H2CN                          |                         |
| HC2N                          | •                       |
| NH3                           | anmonia                 |
| HNCO                          | HOCYADIC acid           |
| HOCO                          |                         |
| HCNH <sup>+</sup>             |                         |
| HNCS                          | sothiocyanic acid       |
| CIN                           | cyanoeunynyi            |
| C30                           | LICATOON MODOXIGE       |
| HACS                          | thioformaldehyde        |
| H_Ot                          | hubeniumien             |
| H3U<br>SiCo                   | nyaronium ion           |
| 3103                          |                         |
| CAH                           | hutadiynyl              |
| CaHa                          | cyclopronenvlidene      |
| H-CCC                         | propadienvlidene        |
| HCOOH                         | formic acid             |
| CH <sub>2</sub> CO            | ketene                  |
| HC <sub>3</sub> N             | cyanoacetylene          |
| HNC3                          |                         |
| CH <sub>2</sub> CN            | cyanomethyl             |
| NH <sub>2</sub> CN            | cyanamide               |
| CH <sub>2</sub> NH            | methanimine             |
| HC2NC                         |                         |
| CHA                           | methane                 |

| Species                          | Name                    | Species                            | Name                  |
|----------------------------------|-------------------------|------------------------------------|-----------------------|
| H <sub>2</sub> COH <sup>+</sup>  | protonated formaldehyde | HC5N                               | cyanodiacetylene      |
| 51H4                             | silane*                 | C-H                                |                       |
| C4S1                             |                         | нооси.                             | mathud formate        |
| C5                               | pentatomic carbon*      | CH <sub>3</sub> C <sub>3</sub> N   | methylcvanoacetylene  |
| C4H                              | pentynylidyne           | CH <sub>3</sub> COOH               | acetic acid           |
| C <sub>s</sub> N                 |                         | H <sub>2</sub> C <sub>6</sub>      |                       |
| C <sub>2</sub> H <sub>4</sub>    | ethylene*               | CH <sub>2</sub> OHCHO              | glycolaldehyde        |
| H <sub>2</sub> CCCC              | butatrienylidene        |                                    |                       |
| CH <sub>3</sub> OH               | methanol                | CH <sub>3</sub> C <sub>4</sub> H   | methyldiacetylene     |
| CH <sub>3</sub> CN               | methyl cyanide          | CH <sub>3</sub> CH <sub>3</sub> O  | dimethyl ether        |
| CHANC                            | methyl isocyanide       | CH <sub>3</sub> CH <sub>2</sub> CN | ethyl cyanide         |
| CH <sub>3</sub> SH               | methyl mercaptan        | CH <sub>3</sub> CH <sub>2</sub> OH | cthanol               |
| NH <sub>2</sub> CHO              | formamide               | HC7N                               | cyanohexatriyne       |
| HC <sub>3</sub> HO               | propynal                | CgH                                |                       |
| HC3NH <sup>+</sup>               |                         | CH.C.CN                            |                       |
|                                  |                         | CHICHICO                           | 1 contone             |
| C6H                              |                         | NUCHACO                            | A chainet             |
| CH <sub>2</sub> CHCN             | vinyl cyanide           | ClieOUClief                        | M athulana ahual      |
| CH <sub>3</sub> C <sub>2</sub> H | methylacetylene         | chionchia                          | on emplene giycol     |
| CH <sub>3</sub> CHO              | acetaldehyde            | HC.N                               |                       |
| CH <sub>3</sub> NH <sub>2</sub>  | methylamine             | illeget t                          | Cyallo-occa-actra-yuc |
| $C_2H_4O$                        | ethylene oxide          | HCIN                               | cuano dece sente une  |
| CH <sub>2</sub> CHOH             | vinyl alcohol           |                                    | of mo or on house and |

\* Detected in circumstellar envelopes only † tentative

#### Look at Appendix 2

173

 Discovered in Infrared - Discovered in UV ----- Relevant to the Origin of Life

Important Probe of conditions



Others of Note: CO Most common after H<sub>2</sub> HCN, HC<sub>3</sub>N, ... HC<sub>11</sub>N  $\rightarrow$  Carbon chains CH<sub>4</sub> (Methane) PAHs (Polycyclic aromatic hydrocarbons)

## <u>3 Lessons</u>

- Complexity (Up to 13 atoms) is extraterrestrial May be more complex (Hard to detect) Glycine ? 1994 Polycyclic Aromatic Hydrocarbons (PAHs) (Infrared evidence)
- 2. Dominance of Carbon Carbon Chemistry not peculiar to Earth
- 3. Formation & Destruction <u>Analogous</u> to early Earth



Protection by dust grains: scatter and absorb ultraviolet

### Dust

Studies of how they scatter and absorb light (Ultraviolet  $\rightarrow$  Visible  $\rightarrow$  Infrared)

 $\Rightarrow$  Two types, range of sizes up to 10<sup>-6</sup> m

CarbonSilicates $PAHs \rightarrow Graphite$ Si + O + Mg, Fe, ...~ SootBoth Produced by old stars

## **Formation of Interstellar Molecules**

1. H<sub>2</sub>

Must lose the potential energy difference before it falls apart (~ 10<sup>-14</sup> s) Collisions: OK in lab, too slow in space

Emit photon: very slow for H<sub>2</sub> (10<sup>7</sup> s) H + H + catalyst = H<sub>2</sub> + catalyst surface of dust grain H Dust

#### **Formation of Interstellar Molecules**

2. More complex molecules Problem is activation energy barrier T ~ 10 K << Barrier Use reactions <u>without</u> activation energies e.g. Molecular ions, like HCO<sup>+</sup>

 $\begin{array}{c} \mbox{Cosmic Ray} \\ \hline & & \\ \hline & & \\ \mbox{H}_2^+ \ + \ H_2 \ \rightarrow \ H_3^+ \ + \ H \\ H_3^+ \ + \ CO \ \rightarrow \ HCO^+ \ + \ H_2 \\ \hline & \\ \mbox{XH}^+ \ + \ e^- \ \rightarrow \ X \ + \ H \end{array} \begin{array}{c} \mbox{Energy + simple mol.} \\ \hline & \rightarrow \ Reactive \ mol.} \\ \hline & & \\ \mbox{\phi} \\ \hline & \\ \mbox{More complex} \end{array}$ 



#### **Molecules on Dust Grains**



Stick on grains "ice"

Infrared observations show this: as molecules Vibrate, absorb infrared e.g.  $H_2O$  absorbs at  $3 \times 10^{-6}$  m  $CH_4$  absorbs at  $8 \times 10^{-6}$  m

## Ices on Dust Grains



#### **Molecules on Dust Grains**

Icy "mantles" contain H, O, C, N Further reactions possible  $\rightarrow$  more complex molecules (e.g. Ethanol)

- $\rightarrow$  Building blocks of life ?
- → Life ??? Hoyle and Wickramasinghe

#### New stars and planets form in same regions

## Implications

- 1. Similar (Carbon-Dominated) Chemistry
- 2. Direct Role in Origin of Life?
- 3. Formation + Destruction Analogous to Early Earth

#### Roles of Dust

- 1. Protection from UV
- 2. H<sub>2</sub> Formation
- 3. Depletion  $\rightarrow$  Mantles of Ice H<sub>2</sub>O, NH<sub>3</sub>, CH<sub>4</sub>, CO<sub>2</sub>, HCOOH, ...  $\uparrow$ Methane

# Star Formation

#### **Current Star Formation**

## Molecular Clouds

#### • Composition

- H<sub>2</sub> (93%), He (6%)
- Dust and other molecules (~1%)
  - CO next most common after H<sub>2</sub>, He
- Temperature about 10 K
- Density (particles per cubic cm)
  - ~100 cm<sup>-3</sup> to 10<sup>6</sup> cm<sup>-3</sup>
  - Air has about 10<sup>19</sup> cm<sup>-3</sup>
  - Water about  $3 \times 10^{22} \text{ cm}^{-3}$
- Size 1-300 ly
- Mass 1 to 10<sup>6</sup> M<sub>sun</sub>

## A Small Molecular Cloud



## Next Class

#### Details of Star Formation and Rate