

Astronomy 350L (Fall 2006)

The History and Philosophy of Astronomy

(Lecture 25: Modern Developments II: Inflation)

Instructor: Volker Bromm TA: Jarrett Johnson

The University of Texas at Austin

Big Bang Theory: Successes and Problems

Successes: - Hubble expansion of galaxies

 Helium and hydrogen abundance
 cosmic microwave background

Problems: - requires fine-tuning in initial conditions

Robert Dicke: Princeton's Titan

- 1916 97
- important contributions both in theory and observation
- cosmic microwave background
 - renewed prediction
 - detection strategy
 (`Dicke radiometer')
 - beaten by Penzias and Wilson who detected CMB by serendipity
- pointed out fundamental riddle with standard Big Bang model ("flatness problem")

The Flatness Problem

Size of Universe vs. Age

 TINY difference in density in early universe translate into HUGE difference in long-term fate!

The Flatness Problem

 Omega= actual density/ critical density

 In Einstein's General Relativity, the universe's density is reflected in its overall geometry (`curvature')

The Flatness Problem

Omega vs. Age

- Tiny deviations from Omega=1 briefly after Big Bang very rapidly develop into huge ones!
- Flatness Problem: Why is the universe, after billions of years, observed to be still so close to critical (Omega=1)???

The Horizon Problem

 Big Q: Why is the universe so similar in all directions? (`isotropy')

All-sky projection of cosmic microwave radiation

The Horizon Problem

Big Q: Why is the universe so similar in all directions? (`isotropy')

A=B à requires: (1) causal contact (but there was no time!)
 (2) fine tuning (to extreme degree)

Standard Big Bang: Fine-Tuning Problem

• Within standard Big Bang model, need to postulate fine-tuning of conditions briefly after the Big Bang

???

• Our Universe appears highly improbable

 Was the universe created with fine-tuned initial conditions so as to allow our existence? (so-called `anthropic principle')

The Particle Physics Revolution (1970s)

 GUT= Grand Unified Theory
 1974: Sheldon Glashow and Howard Georgi

- Early in the universe, all 4 forces of nature were unified into one `superforce'
- With time, the forces attain separate identity

The GUT Phase Transition

10⁻³⁴ seconds after Big Bang: Universe has cooled below critical temperature for Grand Unification (i.e., EM = weak force = strong force)
Symmetry between strong and electroweak force will be `broken'

- Analogy for `spontaneous symmetry breaking' (SSB):
 glasses in dinner table setting
 - initially, they are all of equal status

- after SSB: symmetry is broken (one glass is special)

The GUT Phase Transition

• Before symmetry breaking (during Grand Unified Era):

- 3 forces are unified
- `Identity fields' (technically `Higgs fields') which eventually are responsible for making forces different, all have zero values

 After symmetry breaking: Higgs fields have non-zero value à strong force is different from electroweak force

Delayed Phase Transition: `False Vacuum'

- Higgs field does not immediately `roll away' from zero point
- Universe remains for a while in high-energy state
 - so-called `false vacuum'

Weird Properties of the False Vacuum

`False vacuum' has never been observed in laboratory, but we can speculate about its behavior!
False vacuum has negative pressure (=tension)

Normal gas

- positive pressure
- expanding bubble loses energy

False Vacuum

- negative pressure
- expanding bubble gains energy

Alan Guth: Inventing Inflation

- Born 1947 (New Brunswick, NJ)
- 1980: Professor at MIT
- 1981: Inflationary Universe
 "Spectacular Realization:
 - Universe did go through an episode of tremendous expansion briefly after the Big Bang"
- natural solution for Big Bang fine-tuning mystery

Weird Properties of the False Vacuum

- `False vacuum' has negative pressure (=tension)
- According to Einstein, negative pressure has repulsive gravity (`anti-gravity')

 expanding universe, containing false vacuum, creates more and more false vacuum à runaway expansion à inflation

Guth's Inflationary Universe

 Universe expands by tremendous factor (~10⁵⁰) between 10⁻³⁴ and 10⁻³² seconds

Radius of Universe vs Age

The End of Inflation

Inflation ends when Higgs field finally `rolls down' into `true vacuum' (minimum energy) state
strong force is now distinguished from electroweak one
universe now contains only positive pressure material

Inflation solves the Flatness Problem

• Even if universe started out with curvature, inflation will smooth this out, and drive universe to flatness!

Exponential Expansion of space

Important prediction: Omega = 1 ("Space is flat")

• Spectacularly confirmed in 2003 by WMAP satellite

Inflation solves the Horizon Problem

 Inflation has blown up microscopic region in early universe (small enough for causal interactions) to size way beyond our current observable universe

The Multiverse

 maybe there are (infinitely?) many distinct universes, each one triggered by a phase transition, leading to inflation?!

time

- eternal inflation (A. Linde)
 eternal (no beginning in
 - time)
 - self-reproducing

The Dark Side of the Universe

• Big Q: What is the universe made of?

- consensus view of early 21st century (WMAP):
 - 4% normal matter (`baryons') (stars, gas, people...)
 - 23% dark matter
 - 73% dark energy

 Dark Energy has negative pressure, and thus blows apart universe (2nd inflation-like episode?)

• Is Dark Energy connected to inflaton field?

The Inflationary Universe

1970s: Realization that Big Bang has problems

- flatness problem
- horizon problem
- magnetic monopole problem

• 1980s: Inflationary Universe Theories developed

- Alan Guth first proposes inflation (1981)
- inflation is triggered during GUT symmetry breaking
- universe spends some time in `false vacuum' state
- false vacuum drives space apart at accelerating pace

Present-day cosmic accelaration

- Dark Energy has negative pressure à anti-gravity
- we ve just entered 2nd inflation-like phase of runaway expansion