AST383D (Fall 2005)

STELLAR STRUCTURE AND EVOLUTION

Problem Set 3

Due Tuesday, November 22, 2005 (worth 20/100)

1. Polytropic Stellar Models

- a. Numerically solve the Lane-Emden equation for index n = 1.5 and n = 3. Determine the value for the dimensionless radius ξ_n , and evaluate the expression $(-\xi^2 \frac{d\Theta}{d\xi})_{\xi_n}$ (i.e., at the surface).
 - b. Plot $\Theta(\xi)$ vs. ξ for both n (on the same plot).

2. Simple Model for the Sun

Experience shows that the structure of the Sun can approximately be described with an n=3 polytrope. Use your results from part 1 to construct such a model.

- a. What is the central density ρ_c (in g cm⁻³)? Determine the numerical value of A in $\xi = Ar$. (Hint: Evaluate this expression at the surface of the Sun.) Find the value of K in $P = K \rho^{1+1/n}$. (Hint: Look up your Lecture Notes.) What is the central density P_c (in dyne cm⁻²)? Using the ideal gas law (with $\mu \simeq 0.6$), what is T_c ? How do P_c , ρ_c , T_c compare with the results from more sophisticated calculations?
 - b. Plot P (in dyne cm⁻²) and ρ (in g cm⁻³) vs. radius r (in cm).