
Galaxy Evolution...

- ...is the study of how galaxies form and how they change over time.
- As was the case with stars...
 - we can not observe an individual galaxy evolve
 - but we can observe different galaxies at various stages of their life cycles

- This is made easier by virtue of lookback time.
- We can plot a "family album" for each type of galaxy.
- The greater the redshift...
 - the younger the galaxy!

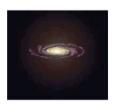
Modeling Galaxy Formation

- With our current telescope technology...
 - we are unable to see back to the time when galaxies first formed
 - we must rely on theoretical (computer) models to describe how galaxies formed
- The following assumptions are made when constructing these models:
 - 1. the Universe was uniformly filled with Hydrogen & Helium gas for the first million years after the Big Bang (called **Dark Ages**)
 - 2. this uniformity was not quite perfect; some regions of the Universe were slightly denser than others (called **Primordial Fluctuations**)
- All of the H & He gas expanded with the Universe at first.
 - after about a billion years, the denser regions slowed down and began to collapse under self-gravity (our familiar **gravitational collapse**!)
 - the collapsing gas became protogalactic clouds

Modeling Galaxy Formation

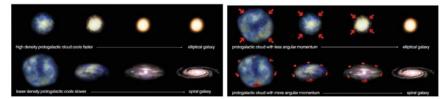
- As a protogalactic cloud collapses, its gravitational potential energy heats up gas and then is "radiated away".
 - Gas gets colder as radiation takes energy away with it from the cloud. Energy Stolen!
 - stars begin to form in the coldest, molecular cloud cores
 - same physics as when ionized and atomic ISM condenses into molecular clouds and forms star in the star-gas-star cycle of the Milky Way
- Conservation of angular momentum
 - caused remaining gas to rotate faster and flatten...star formation continues in disk
 - with no gas left in the spheroid, no new stars are formed and only old, red stars remain

Modeling Galaxy Formation


(a) A protagalactic cloud contains only hydrogen and helium gas.

(c) Conservation of angular momentum ensures that the remaining gas flattens into a spinning disk.
Copyright @ Addison Wesley.

(b) Halo stars begin to form as the protogalactic cloud collapses.



(d) Billions of years later, the star-gas-star cycle supports ongoing star formation within the disk. The lack of gas in the halo precludes further star formation outside the disk.

publ

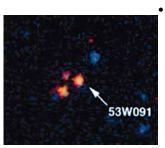
What Determines Galaxy Type?

- Not Solid Yet, but we can explore two options:
 - the initial conditions of the protogalactic cloud; i.e. destined from birth
 - later interactions with other galaxies; i.e. a life-altering conversion
- Two plausible explanations regarding the birth properties of the protogalactic cloud:
 - Protogalactic spin...the initial angular momentum determines how fast the cloud will form a disk before it is completely turned into stars
 - Protogalactic cooling...the initial density determines how fast the cloud can form stars before it collapses into a disk

When Spirals Collide Model of Galaxy Interaction

Movie. Click to play.

© 2005 Pearson Education Inc., publishing as Addison-Wesley


What Determines Galaxy Type?

accounting for redshift

galaxy's history

• white and blue stars are missing

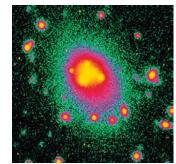
• no gas will be left to form a disk

- Galaxy Interactions
 - when two spiral galaxies collide
 - tidal forces randomize the orbits of stars
 - gas either falls to the center to form stars
 - or it is stripped out of the galaxies
 - the disk is removed
- The galaxy becomes an elliptical.

This giant elliptical provides evidence for

• it is very distant (young) and very red, even

the protogalactic cooling explanation.

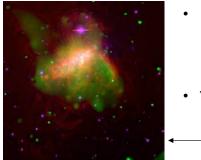

• Explosive, instantaneous starformation occurred at very early times

• star formation has ceased very early in the

The Role of Galaxy Clusters

- Galaxy clusters provide evidence that some galaxies are shaped by interactions:
 - elliptical galaxies are more common in cluster centers
 - collisions will occur more often in crowded cluster centers
 - central dominant (CD) galaxies are gigantic ellipticals found in cluster centers
 - they grow large by consuming other galaxies

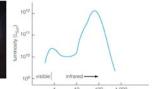
- These CD galaxies often contain tightly bound clumps of stars.
- They are probably the leftover cores of galaxies which were *cannibalized* by the CD.
- Some CD galaxies are more than 10 times as massive as the Milky Way.
 - making them the largest galaxies in the Universe!


Unusual Galaxies I: Starburst Galaxies

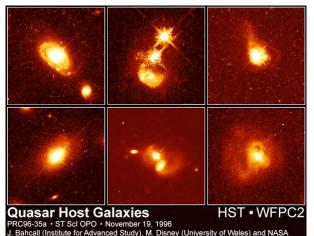
- An average of 1 new star per year forms in the Milky Way.
- We observe some galaxies with a star-forming rate of 100 per yr.
- We call them starburst galaxies.
 - infrared image of Arp 220 —
- They look normal in visible light (10¹⁰ L_{\odot} like Milky Way).
 - but they are 100 times brighter in infrared light
 - molecular clouds block the visible/UV light from new stars
 - dust in the clouds absorbs this light and reemits the energy as infrared light
- With such a fast rate of star formation, the galaxy will use up its gas..
 - in only a few 100 million years
 - starburst phase is temporary in light of fact that galaxy is billions of years old

Unusual Galaxies II: Quasars

- In the early 1960s, Maarten Schmidt identified the radio source 3C 273 with a faint, **blue star**.
 - the "star's" spectrum displayed emission lines
 - the wavelengths of these lines matched no know element
- Schmidt realized that the emission lines belonged to Hydrogen, but they were highly redshifted.
- This object is very (> 10^{10} light years) far away.
 - But, what? How come we can see "stars" that distant??
 - other such objects were subsequently discovered
 - they were called *quasi-stellar radio sources* or **quasars** for short
- The farther away we look out in distance, the farther back we look in *time*!
- Quasars exist only in the *early* Universe!

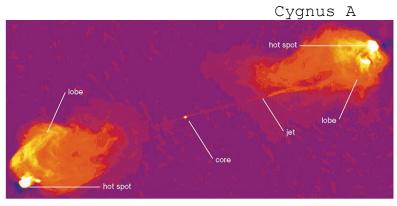

Starburst Galaxies

- 100 times star-forming rate also means 100 times supernova rate.
 - ISM is full of hot superbubbles
 - supernovae continue to pump energy into the superbubbles
- The hot $(10^7 10^8 \text{ K})$ gas breaks out
 - and a **galactic wind** streams from galaxy
 - NGC 1569 (X-ray-green; visible-red)
- Starburst galaxies are irregular in type.
 - lots of dusty molecular clouds and usually two distinct clumps of stars
- This suggests that the starburst is caused by the collision of two spiral galaxies.
 - although a close encounter could trigger starburst, e.g. Large Magellanic Cloud


Quasars...

- are extremely luminous.
 - 10⁴⁰ watts
 - 1,000 brighter than the entire Milky Way Galaxy
- are extremely variable.
 - luminosity changes < 1 hour
 - implies they have a very small size
- have redshifted emission lines.
 - greatest is 6.8 times the rest wavelength

1 10 100 1,000

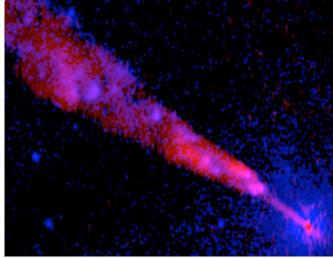

Hubble ST shows us that quasars do live in galaxies...they are Active Galactic Nuclei!

Active Galactic Nuclei

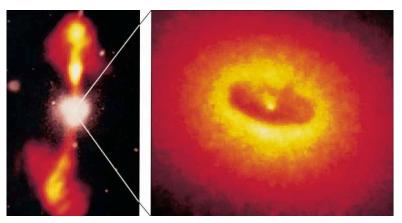
Radio Galaxies

- galaxies which emit large amounts of radio waves
- the radio emission come from *lobes* on either side of the galaxy; **not** the galaxy itself

Unusual Galaxies III: Active Galactic Nuclei (AGN)

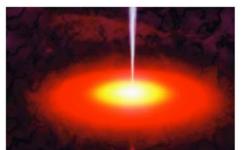

- Seyfert Galaxies
 - spiral galaxies with an incredibly bright, starlike center (nucleus)
 - they are very bright in the infrared
 - their spectra show strong **emission** lines

Circinus


The luminosity can vary by as much as the entire brightness of the Milky Way Galaxy!!

X-ray/Radio Image of Centaurus A

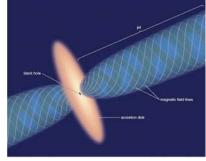
X-ray is blue; radio is red


What powers these Active Galactic Nuclei? Hubble Space Telescope gave us a clue

NGC 4261

Active Galactic Nuclei

- The energy is generated from matter falling onto a **supermassive black hole**...
 - 1.2 x $10^9\,M_{\odot}$ for NGC 4261
 - $3 \times 10^9 M_{\odot}$ for M87
- ...which is at the center (nucleus) of the galaxy.



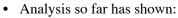
- Matter swirls through an accretion disk before crossing over the event horizon.
- Gravitational pot. energy lost
 - $= mc^2$ the mass energy
 - 10 40% of this is radiated away
- Process is very efficient for generating energy.

Active Galactic Nuclei

- Formation of the Jets
 - magnetic fields in accretion disks are twisted
 - they pull charged particles out of the disk and accelerate them like a slingshot
 - particles bound to magnetic field; focused in a beam

- Orientation of beam determines what we see:
- if beams points at us, we see a quasar
- if not, the molecular clouds/dust of the galaxy block our view of the nucleus
- so we see a radio galaxy
- lobes are where jets impact intergalactic medium

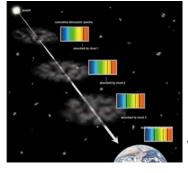
Active Galactic Nucleus


- Quasars are observed in the distant past (high redshift).
 - this implies that many galaxies had bright nuclei early in their histories, but those nuclei have since gone dormant
- So many galaxies which look "normal" today have supermassive black holes at their centers.
 - such as Andromeda and Milky Way?
 - Yes, probably.

Movie. Click to launch.

A "Forest" of Absorption Lines

- QUASAR AS A LIGHT HOUSE: As light from a quasar travels toward Earth...
 - it passes through intergalactic Hydrogen clouds and galaxies
 - each cloud leaves absorption lines at a *different* redshift on quasar spectrum
 - this is the only way we can "observe" protogalactic clouds



- H lines at high redshift are broader than those at low
- implies that the gas content of clouds/galaxies is higher in the early Universe
- more heavy element lines are seen at low redshift
- supports element enrichment of galaxies by supernovae

These data support our models of galaxy evolution

Next Stop: Cosmic Web

- November 2
 - Clusters of Galaxies and Beyond (Chapter 22)
- November 4
 - Dark Matter and Dark Energy (Chapter 22)
- Quiz on November 9
- Homework handed out on November 9 (due Nov 16)

