Important Announcement!

- MID-TERM ON OCTOBER 26!
 - Instead of October 19
 - 40 Multiple Choices from the review questions handed out today. Multiple Choices only.
 - Pick your copy!
- Homework#4 has been canceled due to the date change of mid-term.

Station #3, "Einstein's World"

Lecture 13: Space, Time, and Gravity (Chapter S2,S3) Lecture 14: The Bizzarre Stellar Graveyard (Chapter 18)

Lecture 13 Space, Time, and Gravity

Reading: S2 and S3

Relativity & Astrophysics

- Newton's laws of Motion and Gravity are not sufficient to describe many astrophysical phenomena.
 - It's not like Newton's theory was wrong his theory was not sufficient in some circumstances.
 - Slow motion, weak gravity: Newton
 - Fast motion, strong gravity: Einstein
- Einstein has **extended** Newton's theory.
 - Relativity

The Theory of Relativity

- Albert Einstein surprised the world in 1905 when...
 - he theorized that time and distance can not be measured absolutely
 - they only have meaning when they are measured relative to *something*
- Einstein published his theory in two steps:
 - **special theory of relativity** (1905)...how space & time are interwoven
 - general theory of relativity (1915)...effects of gravity on space & time
- What is "relative" in relativity?
 - motion...all motion is relative
 - measurements of motion (and space & time) make no sense unless we are told what they are being measured relative to
- What is absolute in relativity?
 - the laws of nature are the same for everyone
 - the speed of light (in a vacuum), c, is the same for everyone

Speed of Light is Absolute! (not Relative!)

"Relative" Motion

Time Dilation

- To an observer outside the train, the ball appears to move faster.
 - makes common sense
- Now lets consider Jackie moving by at close to the speed of light .
 - she bounces light instead of a ball

Outside the train, the ball appears to be going faster: It has the same up-and-down speed, plus the forward speed of the train.

The faster the ban is moving, the faster the ban appears to be going to the outside observer.

- The outside observer can **not** see the light moving faster than **c**.
 - yet the light <u>does</u> travel a longer distance as seen by the observer
 - so time <u>must</u> run more slowly for Jackie!

Length Contraction

- As Jackie moves past you at high velocity...
 - she tries to measure the diameter of your ship
 - but time moves more slowly for her
 - so she measures a shorter length than you do (distance = velocity x time)
- Objects appear shorter to you in the direction which they are moving.

Is it true?

- Some tests of the special theory of relativity:
 - Constancy of speed of light verified in 1887.
 - subatomic particles have been accelerated to speeds of 0.9999 c
 - no matter how much energy we put in, they never reach c
 - the $\pi^{\scriptscriptstyle +}$ meson particle decays in 18 nsec when at rest
 - at high velocities, it lasts longer...proving time dilation
 - the equation E = mc², exemplified by nuclear reactors and bombs, is a direct consequence of special relativity

Mass Increase

- As Jackie moves by at high speed, you give both her & her identical sister a push.
 - time runs more slowly for Jackie, so she feels the push for a shorter time
 - Jackie accelerates less than her sister does
 - Newton's 2nd Law (F = ma) says if F is same, Jackie's mass must be greater
- Objects moving by you have a greater mass than when at rest.

New Common Sense...It's All Relative!

- As Jackie moves by you at close to the speed of light...
 - you will see her time run slower, her length contract, and her mass increase
- But what does Jackie see?
 - she is stationary; she sees *you* moving by at high speed
 - since the laws of nature are the same for everyone
 - she sees *your* time run slower, *your* length contract, and *your* mass increase

New Common Sense...It's All Relative!

- How can both perceptions be correct?
 - just as an Australian can see the Moon "up" in the sky while simultaneously an American does not
 - a correct definition of "up" will resolve the dispute
 - the dispute between Jackie's and your perceptions of each other can be resolved with more adequate definitions of time & space

General Relativity: Gravity

- Albert Einstein stunned the scientific world again in 1915...
 - with publication of his general theory of relativity
 - it is primarily a theory of *gravity*
- Isaac Newton saw gravity as a mysterious "force."
 - he could explain its actions, but not how it was transmitted through space
 - Einstein theorized that the "force" of gravity arises from distortions of space (or **spacetime**) itself!
- spacetime...the 4-dimensional combination of space & time that forms the very fabric of the Universe
- matter shapes and distorts spacetime
 - space(time) itself can be curved
 - you may think you are traveling a straight line
 - but your motion is actually curved

Ticket to the Stars

- Although we can not travel faster than the speed of light...
 - special relativity will make the journey seem shorter <u>if</u> we can travel close to the speed of light
 round-rip time ~ 50 years

- your reference frame
- n your reference frame, Earth nd Vega make the round trip.)

- Time moves more slowly for the space traveler.
- The distance to be covered is contracted.
- Space travelers can reach distant stars in their lifetimes.
- Their friends and family will not be there to greet them when they return home to Earth.

Matter Distorts Spacetime

- Matter distorts spacetime like weights on a taut rubber sheet.
- The greater the mass, the greater the distortion of spacetime.

Mass and Spacetime

- According to Newton, all bodies with mass exert a gravitational force on each other.
 - even Newton had problems accepting this concept of "action at a distance"
- General relativity removes this concept.
 - mass causes spacetime to curve
 - the greater the mass, the greater the distortion of spacetime
 - curvature of spacetime determines the paths of freely moving objects
- e elliptical orbit c circular orbit u unbound orbit

The Strength of Gravity

- The more that spacetime curves, the stronger gravity becomes.
- Two basic ways to increase gravity/curvature of spacetime:
 - · increased mass results in greater curvature at distances away from it
 - curvature is greater near the object's surface for denser objects
 - for objects of a given mass, this implies smaller objects

- All three objects impose the same curvature at a distance.
 - White dwarf imposes steeper curvature at Sun's former position.
 - Black hole punches a hole in the fabric of spacetime.
 - Nothing can escape from within the event horizon.

Orbits in Spacetime

- The "rubber mat" analogy shows only an object's position in two dimensions of space.
 - Earth returns to the same position in space (*w.r.t.* the Sun) each year
 - Earth does <u>not</u> return to the same position in spacetime each year
 - Earth must also move forward in time

Precession of Mercury's Orbit

- Newton's law predicted that the orbit of Mercury should precess.
 - due to gravitational influence of the planets
 - this precession was measured in the 1800s
 - **but** Newton's law could not account for the exact precession period which was observed

- the discrepancy between observation and theoretical prediction was real
- Note: The amount of precession with each orbit is highly exaggerated in this picture.
- Einstein knew of this discrepancy and used general relativity to explain it.
 - Newton's law assumed that time was absolute & space was flat
 - but when Mercury is closest to the Sun, time runs more slowly & space is more curved
- Predictions of general relativity matched the observations exactly!

Gravitational Lensing

- Light will always travel at a constant velocity.
 - therefore, it will follow the straightest possible path through spacetime
 - if spacetime is curved near a massive object, so will the trajectory of light

- During a Solar eclipse in 1919, two stars near the Sun...
 - were observed to have a smaller angular separation than...
 - is usually measured for them at night at other times of the year
- This observation verified Einstein's theory...
 - making him a celebrity

Gravitational Lensing

- Since that time, more examples of **gravitational lensing** have been seen.
- They usually involve light paths from quasars & galaxies being ben by intervening galaxies & clusters.

Einstein's Cross

an Einstein ring galaxy directly behind a galaxy

Gravitational Redshift

- General Relativity predicts that time runs more slowly when gravity is stronger.
- If time runs more slowly on the surface of stars than on Earth...
 - spectral lines emitted or absorbed on the surfaces of stars
 - will appear at a lower frequency (cycles/s) than measured on Earth
 - the length of 1 second is longer on the star's surface than on Earth
- This gravitational redshift has been observed.
- It takes infinite amount of time to get out of a blackhole.

Gravitational Waves

- General relativity also predicts that...
 - rapidly accelerating masses should send ripples of curvature through spacetime
 - Einstein called these ripples gravitational waves
 - similar to light waves, but far weaker
 - they have no mass and travel at the speed of light
- They have not yet been directly observed.
 - but the loss of energy from binary neutron stars
 - the "Hulse-Taylor" binary
 - is consistent with the energy being emitted as gravitational waves

© 2005 Pearson Education, Inc., publishing as Addison Wesley

Next Lecture: "The Bizarre Stellar Graveyard"

- Reading: 18
- Please turn in your homework#3 before the class begins!
 - Type your homework.
 - Staple it together.