Announcements

- Quiz\#3 today at the end of 60 min lecture.
- Homework\#3 will be handed out on Thursday.
- Due October 14 (next Thursday)
- Review of Mid-term exam will be handed out next Tuesday.
- Mid-term exam will be variants (if not identical) of some of the problems in the review.
- Study it to prepare well for mid-term!

Luminosity of Stars: How bright they actually are!

Luminosity - the total amount of power radiated by a star into space. Or, the total amount of energy radiated per unit time.

- But, we observe something APPARENT to us.
- Apparent brightness refers to the amount of a star's light which reaches us per unit area.
- the farther away a star is, the fainter it appears to us
- how much fainter it gets obeys an inverse square law
- its apparent brightness decreases as the $(\text { distance })^{2}$

App Bright $=\mathrm{L} / 4 \pi \mathrm{~d}^{2}$

- The apparent brightness of a star depends on two things:
- How much light is it emitting: luminosity (L) [watts]
- How far away is it: distance (d) [meters]

Lecture 11 Properties of Stars

Reading: 16

The "Brightness" of Stars: How they look

Astronomers still use an ancient method for measuring stellar brightness which was proposed by the Greek astronomer Hipparchus (c. 190-120 B.C.)

Mayniture Scale

-The scale determined by naked eye observations.
-This scale runs backwards.
-The bigger the number, the fainter the star

- Brightest stars are \#1, next brightest are \#2, etc.
-Physicists absolutely hate this scale.

The Modern Magnitude System

-Don't rely on eyes, but use precise, mathematical definition: apparent magnitude $=-2.5 \log$ (app bright)

- brightness of a star as it appears from Earth
- each step in magnitude is roughly 2.5 times in brightness
-100 times brighter --> 5 magnitudes brighter
absolute magnitude
- the apparent magnitude a star would have if it were 10 pc away

Spectral Type Classification System

O B A F G K M (L)

Oh Be A Fine Girl/Guy, Kiss Me!

Colors of Stars: Not only beautiful, but also very important!

Stars come in many different colors

The color tells us the star's temperature according to Wien's Law.

Bluer means hotter!

Masses of Stars

- Mass is the single most important property of any star.
- at each stage of a star's life, mass determines...
- what its luminosity will be
- what its spectral type will be
- The mass of a star can only be measured directly by ...
- observing the effect which gravity from another object has on the star
- This is most easily done for two stars which orbit one another...a binary star!

Spectral Types of Stars

- Spectral types are defined by the:
- existence of absorption lines belonging to various elements, ions, \& molecules in a star's spectrum
- the relative strengths of these line
- However, spectral type is not determined by a star's composition.
- all stars are made primarily of Hydrogen \& Helium
- Spectral type is determined by a star's surface temperature.
- temperature dictates the energy states of electrons in atoms
- temperature dictates the types of ions or molecules which exist
- this, in turn, determines the number and relative strengths of absorption lines in the star's spectrum
- this fact was discovered by Cecilia Payne-Gaposchkin in 1925

Binary Stars

 (two stars which orbit one another)- Optical doubles
- two unrelated stars which are in the same area of the sky
- Visual binaries
- a binary which is spatially resolved, i.e. two stars are seen (e.g. Sirius)

Binary Stars

- Spectroscopic binaries
- a binary which is spatially unresolved, i.e only one star is seen; the existence of the second star is inferred from the Doppler shift of lines.

Binary Stars

- The stars orbit each other via gravity.
- So the laws of Kepler \& Newton apply!
- Newton's version of Kepler's Third Law:
$P^{2}=4 \pi^{2} a^{3} / G\left(m_{1}+m_{2}\right)$
- If you can measure the orbital period of the binary (P) and the distance between the stars (a), then you can calculate the sum of the masses of both stars $\left(m_{1}+m_{2}\right)$.

Binary Stars

- Eclipsing binaries
- a binary whose orbital plane lies along our line of sight, thus causing "dips" in the light curve.

The Hertzsprung-Russell Diagram

- A very useful diagram for understanding stars
- We plot two major properties of stars:
- Temperature (x) vs. Luminosity (y)
- Spectral Type (x) vs. Absolute Magnitude (y)
- Stars tend to group into certain areas

The Main Sequence (MS)

90% of all stars lie on the main sequence!

Stellar Luminosity

- HOW CAN TWO STARS HAVE THE SAME TEMPERATURE, BUT VASTLY DIFFERENT LUMINOSITIES?
- The luminosity of a star depends on 2 things:
- surface temperature
- surface area (radius)
- $L=\sigma T^{4} 4 \pi R^{2}$
- The stars have different SIZES!!
- The largest stars are in the
 upper right corner of the H-R Diagram.

Stellar Luminosity Classes

Class	Description
I	Supergiants
II	Bright giants
III	Giants
IV	Subgiants
V	Main sequence

Stellar Masses on the H-R Diagram

Mass-Luminosity Relation: Why?

- All main sequence stars fuse H into He in their cores.
- Luminosity depends directly on mass because:
- more mass means more weight from the star's outer layers
- more gravitational force --> contraction!
- nuclear fusion rates must be higher in order to maintain gravitational equilibrium

We use binary stars to measure directly the masses of stars of every type. This leads to the:

Mass-Luminosity Relation

$L \propto m^{3.5}$
for main sequence stars only

- As one moves to the upper-left of the main sequence:
- stars become more massive
- stars become even much more luminous
- stars become fewer in number

Lifetime on the Main Sequence

How long will it be before MS stars run out of fuel? i.e. Hydrogen?

How much fuel is there?

M

How fast is it consumed? $\mathrm{L} \propto \mathrm{M}^{3.5}$

How long before it is used up?

$$
\mathrm{M} / \mathrm{L}=\mathrm{M} / \mathrm{M}^{3.5}=\mathrm{M}^{-2.5}
$$

Lifetime on the Main Sequence

- O \& B Dwarfs burn fuel like a bus!
- M Dwarfs burn fuel like a compact car!
- Our Sun will last 10 billion years on the Main Sequence
- MS Lifetime $\tau=10$ billion yrs / M ${ }^{2.5}$

Star Clusters I: Open Clusters

StaBARU

- 100's of stars
- million to billion years old
- irregular shapes
- gas or nebulosity is sometimes seen

Pleaides (80 million yrs)

Lifetime on the Main Sequence
So for example:

$$
\begin{array}{ll}
\text { B2 dwarf }\left(10 \mathrm{M}_{\odot}\right) \text { lasts } & 32 \text { million yr } \\
\text { F0 dwarf }\left(2 \mathrm{M}_{\odot}\right) \text { lasts } & 1.8 \text { billion yr } \\
\text { M0 dwarf }\left(.5 \mathrm{M}_{\odot}\right) \text { lasts } & 56 \text { billion yr }
\end{array}
$$

But the Universe is 13.7 billion yr old!
Every M dwarf that was ever created is still on the main sequence!!

Star Clusters II: Globular Clusters

- 100,000 stars
- 8 to 15 billion years old
- spherical shape
- NO gas or nebulosity

M 80 (12 billion yrs)

Clusters are useful for studying stellar evolution!

- all stars are the same distance
- use apparent magnitudes
- all stars formed at about the same time
- they are the same age

Plot an H-R Diagram!

Pleiades H-R Diagram

Globular Cluster H-R Diagram

Older Clusters have Shorter Main Sequences

Announcements (again)

- Homework\#3 will be handed out on Thursday.
- Due October 14 (next Thursday)
- Review of Mid-term exam will be handed out next Tuesday.
- Mid-term exam will be variants (if not identical) of some of the problems in the review.
- Study it to prepare well for mid-term!

