1st Quiz \& 1st Homework

- 20 minutes Quiz today
$-2: 10$ to $2: 30$. Notification at 2:25.
- See left screen for a correction to \#12.
- Homework due next Thursday (Sep. 16)
- Please type! No handwritten homework will be accepted.
- Before you come into a class room on Sep.16, put your homework in a box located at the entrance hall. No homework will be accepted after the class.

Sir Isaac Newton (1642-1727)

- No astronomical phenomena can be understood without Newton's laws of motion and gravity.
- In fact, Newton's laws describe both physical phenomena on Earth and those in the Universe --- Unification of Earth of the Heavens.

Lecture 4 Laws of Motion

Reading: Chapter 5

Newton's First Law of Motion

- No net force, no change in velocity.

A spacecraft in space does not need any fuel --- it will keep going forever.

- No change on velocity (no acceleration), no net force.

You don't feel any sensation of motion while you are in the airplane at constant velocity.

Newton's Second Law of Motion

- Force causes acceleration.

Zero Gravity?

- When nothing pushes Bart back, he is freely falling.
- While there is gravity, he does not feel it when freely falling.
- Likewise, while astronauts are certainly influenced by Earth's gravity, they do not feel it because they are freely falling! They look weightless not because of zero gravity, but because of free-fall.

- Orbiting around Earth is equivalent to freely falling.

$$
\begin{aligned}
& \text { ent } \\
& F=m_{\text {bart }} g
\end{aligned}
$$

Newton's Third Law of Motion

- Force in one direction, the same force in the opposite direction.

Q: Why can we stand on the ground?
A: Because the ground pushes you back!

$$
F=m_{\text {bart }} g
$$

$$
g: \text { gravitational accel. }
$$

Newton's Universal Law of Gravity

- $F_{\text {gravity }}$ between two objects is given by (gravitational constant)
\mathbf{x} (mass of object 1)
x (mass of object 2)
/ (distance between the objects) ${ }^{2}$

explains motion of planets and

 comets around the Sun- It's $F_{\text {gravity }}=G M_{1} M_{2} / d^{2}$, where
- $M_{I}=$ mass of the Sun
- $M_{2}=$ mass of a planet/comet
- $d=$ distance to a planet/comet
- Newton's calculations agree well with observational facts established by Kepler (Kepler's Laws):

1. Planet's orbits are slightly elliptical.
2. Planets move faster when they are closer to the Sun.
3. The inner planets orbit faster than the outer planets.

- $F_{\text {gravity }}=G M_{1} M_{2} / d^{2}$ causes tides!
- Since gravitational force
decreases with (distance) ${ }^{2}$, the Moon's pull on Earth is strongest on the side facing the Moon, and weakest on the opposite side.
-The Earth gets stretched along the
 Earth-Moon line.

Q 2005 Pearson Education, Inc., publishing as Addison Wesley
-The oceans rise relative to land at these points.

Tides

Changing Orbits

orbital energy $=$ kinetic energy + gravitational potential energy conservation of energy implies: orbits can't change spontaneously
An object can't crash into a planet unless its orbit takes it there.

An orbit can only change if it gains/loses energy from another
 object, such as a gravitational
© 2005 Pearson Education, Inc., publishing as Addison Wesley encounter:
If an object gains enough energy so that its new orbit is unbound, we say that it has reached escape velocity.

Tidal Friction

- This fight between

Moon's pull \& Earth's rotation causes friction.

- Earth's rotation slows
down (1 sec every

- Conservation of angular momentum causes the Moon to move farther away from Earth.

Look at the Moon...

- Synchronous Rotation: The rotation period of a moon, planet, or star equals its orbital period about another object.
- Tidal friction on the Moon (caused by Earth) has slowed its rotation down to a period of one month.
- The Moon now rotates synchronously.
- We always see the same side of the Moon.
- Tidal friction on the Moon has ceased since its tidal bulges are always aligned with Earth.

Next lecture: Understand Light

Reading: Chapter 6
Have a good weekend.

