Extraterrestrial Life

the Drake Equation

R* = Star Formation Rate = Number of Stars / Age of the Galaxy = 400 billion stars / 10 billion years = 40 stars per year (10, 20, 25, 45)

Number of Stars = Mass of stars in the galaxy / Mass of the average star

= 160 billion solar masses / 0.4 solar masses/star= 400 billion stars

Formation of Stars

- Gravity causes a mass of gas to collapse, increasing the density and temperature until nuclear reactions begin.
- First generation stars formed from a gas containing hydrogen and helium, while current star formation occurs in molecular clouds (colder than the first ones – therefore less massive stars), with molecules and dust particles. (infrared observations)
- Stars form in large clusters, but low-mass stars can form in isolation ("insideout collapse")
- Massive stars have smaller lifetimes
- More Low-mass stars than Massive stars.
- Rotation of stars while collapsing is amplified due to a principle: conservation of angular momentum.
- Disks common around low-mass stars and others. Possible planet formation.
- Brown Dwarfs are more massive than planets but don't burn H, therefore are not Stars. (between 13 Mj and 0.07 Ms)

fraction of stars that have planetary systems

Detection of Extrasolar Planets (1995)

- Direct Detection (see them or infrared)
 - Not possible nowadays
- Indirect Detection (wobbling stars)
 - Astrometric Technique stars change position in the sky to more distant (background) stars
 - Spectroscopic Ooppler effect (Blue/Red)
 - Transit in front of the star
 - Gravitational lensing

First two techniques showed that 2/3 of stars are binary stars.

Detection techniques find Large planets Close to the star.

- Better technology will detect small planets closer to the star; plus, small stars are surrounded by disks → Fp = 1
- Stars must have heavy elements to form disk with planets → Fp >= 0.02

Properties of our Solar System

- Our Sun has a lifetime of 10 billion years
 - Around 10 planets
- Regularities (predicted by theory of SS formation)
 - orbits close to the same plane
 - orbits in same direction as Sun's rotation
 - rotation in the same direction (except Venus and Uranus)
 - planets evenly spaced, increased by a factor of 1.5 to 2
 - planets sizes and compositions change with distance: terrestrial planets are rocky (iron and silicates) and gas giants are Gas (Hydrogen and Helium) and Icy

Formation of Planetary Systems: rotating disk, Sun in the middle and planets forming in the disk. Planetesimals collide and stick together to form inner planets.

Earth formation

- Earth formed about 4.5 billion years ago
- Earth has a large Moon, which has effects on tides, axis and rotation of the Earth.
 - Earth has a core of iron and other heavy elements and a mantle of silicates.
 - Early Earth had a high temperature and an atmosphere produced by outgassing with N2 and CO2 dissolved in oceans.
 - O2 (in our current athmosphere) was produced by living organisms.

Ne

Number of planets, per planetary system, that are suitable for life

Ne = Np x Fs

- Np number of planets around stars like Sun
- Fs fraction of stars with properties for life to develop
- Water is probably essential as a solvent. So, planet must have exact temperature (distance from the star) to have water (liquid state). Between 273 K and 373 K.
- Pressure must be right too (atmosphere weights the equivalent to 3 elephants).
- Albedo (reflection of light) is important too.
- Rotation, Greenhouse effect and CO2 cycle (negative feedback) important too. Life also stabilizes this.
- CHZ depends on all this.... And it's smaller than HZ (which moves with time). At present HZ is 0.95 to 1.5 AU.
 - \rightarrow Np = 0.1 or 1 or 3 (optimistic view)

- First Generation stars have no heavy elements, therefore no ingredients for life
- Only Main-sequence stars have long constant luminosity. 99% of stars.
- Temperature suitable at least for 5 billion years (rule out stars more massive than 1.25 Ms). 90% of stars.
- Problems with very low-mass stars: Jupiter too close not allowing rocky planets to form, tidal effects from close terrestrial planet (slows it down), flares...
 Binary stars (2/3 of all stars) may have stable planets?
 F2 = 0.2 to 0.9

Ne = 3 x 0.9 = 3 planets (optimistic view)
 = 0.1 x 0.07 = 0.007 = 0.01 (1 in 100) (pessimistic view)

Venus

Very hot (750 K). Greenhouse effect. 96% of CO2. Pressure 90 times higher than on Earth (270 elephants).

No O2 because no living organisms

• Too hot for liquid water.

Ultraviolet light decomposed H2O, and H went away

Volcanic activity and sulfuric acid clouds.

Mars

- Thin atmosphere with 95% of CO2.
- Low pressure (0.6 of Earth) does not allow liquid water.
- In the past maybe had water. It lasted around 1 billion years. Evidence on dry riverbeds and large canyons. Maybe life during that time.
- Viking Mission had some tests:
 - Cameras: didn't show any Martians!
 - GCMS: found no organic molecules (no presence of dead things)
 - GEX: O2 released by chemical reaction.
 - LR: radioactive C release, probably due to peroxide reaction
 - PR: it thoght about life adapted to Martian conditions. Maybe found chemical reactions.
 - ALH84001: nanobacterias in a rock from Mars? Maybe not.

Jupiter, Europa and Titan

Jupiter with Sinkers, Floaters and Hunters in high atmosphere?

• Europa (moon of Jupiter):

- Ice very reflective \rightarrow high albedo
- Liquid Ocean below ice. \rightarrow life near hydrotermal vents?
- Source of energy in the interior from tidal forces from Jupiter.

Titan (moon of Saturn):

- Thick atmosphere with 85% Nitrogen. Pressure 1.5 times than on Earth.
- Oceans of Methane and Ethane?