
 ${ }^{\text {the }}$ Drake Equation

$$
\mathbf{N}^{\prime}=R_{*}+F_{p} * \cap_{e}+F_{1}=F_{i}=F_{c} \cdot l
$$

- R^{*}. $=$ Star Formation Rate
= Number of Ștars / Age ōf the Galaxy.
= 400 billion stars / 1.0 billión years
$=40$ stars per year. $(10,20,25,45)$
Number of Stars = Mass of stars in the galaxy,/ Màss of the average star
='1.60 billionn solar' masses $/ 0: 4$ solar masses/star =*400 billion stars

\because
 Formátion of Stars

IT

- Gravity causes a mass of gas to collapse, increasing the density and temperature until nucleag reactions begin.
- Firstígeneration stars formed from a gas containing hydrogen and helium, while current star formation occurs in molecular clouds (colder than the first, ones - therefore less massive stars), with molecules and dust particles. (infrared observations)
- Stars form in large clusters, but low-mass stars can form in isolation (${ }^{\circ} \mathrm{F}$ nsideout collapse")
- Massive stars have smaller lifetimes
- More Low-masś stars thán Massive stars.
- Rotation of stars while collapsing is amplified due to, a principle: conservation of angular momentum.
- Disks common around low-mass stars and others. Possible planet formation.
- Brown Dwarfs are mole massive than planets but don't burn \mathbf{H}, therefore are not Stars. (between $13^{\circ} \mathrm{Mj}$ and 0.07 Ms)
- . fraction of stars that have planetary, systems
- Detectioṇ of Extrasolar Planêts (1995)
- Direct Detection (see them or infrared) .
- Not possible nowadays
- Indirect Detection (wobbling stars)
- Astrometric Technique stars change position in the sky to more distant (bāckground) stars
* Spectroscopic oppler effect (Blue/Red)
- Transit in front of the star
- Gravitational lensing
- First two techniques showed that $2 / 3$ of stars are binary stars.
- Detection techniques find Large planets Close to, the star..
- Better technologiy will detect small plảnets closer to the star; plus, small stars are surrounded by disks $\rightarrow \mathrm{Fp}=1$
- Stars must have heavy elèments to form disk with planets \rightarrow Fp $>=0.02$

Properties of our Solar System

- Our Sun hàs a lifetime of 10 billion years
- Around 10 planets
- Regularities (predicted by theory of SS formation)
- orbits close tó the same plane
- orbits in same direction as Sun's rotation
- rotation in the same direction (except Venus and Uranus)
\therefore planets evenly spaced, increased by a factor of 1.5 to 2
-+ planets sizes and compositions change with distance: terrestrial planets are rocky (iron and silicates) and gas giants are Gas (Hydrogen and Helium) and Içy
- Formation of Planetary Systems: rotating disk, Sun in the " middle and planets forming in the disk! Planetesimals collide and stick together to fofm inner planets.

Earth farmation

- Earth formed about 4.5 billion years ago
- Earth has a large Moon, which hàs effectṣ on tides, axis and rótation of the Ëarth?
Earth has a core of iron and other heavy * . elements and a mantle of silicates.
- Early Earth had a high temperature and an atmosphere produced by outgąssing with N2 and CO 2 dissólved in oceans.
- O2 (in our current athmosphere) was produced by living organisms.
- Number of planets,'per planetary system, that are suitable for tife
- $\mathrm{Ne} \neq \mathrm{Np} \times \mathrm{Fs}$

Np - number of planets around stars like Sun .
Fs - fraction of stars"with properties for, life to dévelop

- Water is probably essential'as a solvent. So, planet must have exact temperature (distance "from the star) to" have water (liquid state). Between 273 K and 373 K :
\because Pressure must be right too (atmosphere weights the equivaleṇt to 3 ęlephaņts).
- Albedo (réflection of light) is importât too.
- Rotation, Greenhouse effect and CO2 cycle (negative feedback) important'too. Life also stabilizes this.
- CHZ dependśs on all this.... And it's smaller than HZ (which moves with time). At present HZ is 0.95 to 1.5 AU.
- $\rightarrow \mathrm{Np}=0.1^{\text {ort1 }}$ or 3 (optimistic view)
- First Generation stars have no heavy elements, thereffore nō ingredients for life
- Onlý M'ain-sequence, stars have long constant luminosity. 99\% of stars.
- Temperature suitable at least for 5 billion yéars (rule out stars -more massive, than 1.25 Ms). 90% of stars.
- Problems with very low-mass'stars': Jupiter too çlosé not allowing rocky planets to form, tidal effects from close terrestrial planet (slows it down), flares...
\%: Binary stars (2/3 of all stars) may have stable planets?
- $F 2=0.2$ to 0.9
$\mathrm{Ne}^{\prime}=3 \times 0.9^{*}=3$ planets (optimistic view) .

$$
\left.=0.1^{1} \times 0.07=0.007=0.01(1 \text { in } 100) \text { (pessimistic view }\right)
$$

Venus

- Very hot (750 K). Greeñhouse effect. 96% of CO2.. Pressure 90 times, higher than on Earth (270 elephañts).
- No O2 because no living organisms
- Too hot for liquid water.
- Ultraviolet light decomposed H 2 O , and H went away,
- Volcanic activīty and sulfuric ảcid clóuds.

Mars

- Thin atmosphere with 95% of CO2.
- Low pressure (0.6 of Earth) does not allow liquid water.
- In the past maybe had water. It lastèd around 1 billion years. Evidence on dry riverbeds and large canyons. Maybe dife dúring that time.
- Viking Mission had some tests:
- Cameras: didn't show any Martians!
- GCMS; found no organic molecules (no presence of dead things)
- GEX: O2 released by chemical reactioñ.
- LR: radioactive C release, probably due to peroxide reaction
- PR: it thoght about life adapted to Mattian conditions. Maybe found chemictal reactions.
- ALH84001: 'nanobacțerias in'a róck from, Mars? Maybé not.
- Jupiter with Sinkers, ${ }^{\circ}$ Flóaters and Hunters in high atmosphere?
* Europa (moon of Jupiter):
- Ice very reflective, \rightarrow high albedö
- Liquid Ocean below ice. \rightarrow life near hydrotermal vents?
\because Source of energy in the interior from tidal forces from
- Jupiter.
- Titan (moon of Saturn):
- Thick atmosphere with 85% Nitrogen. Pressure 1.5 times ${ }^{*}$ than oñ Earth.
- Oceans of Methane ánd Ethané?

