Evaluating your Drake Equation
Basic Ideas

• Number of Civilizations in our Galaxy
 – Product of rate of emergence and L
 • Running product gives rate for each step
 • Until L, we have rates
 • Through f_c, we get “communicable” civilizations
 – Multiplying by L gives the number (N)
 • Assumes “steady state” between birth and death of civilizations
Drake Equation:

\[N = R \ast f_p n_e f_\ell f_i f_c L \]

- **N** = number of communicable civilizations in our galaxy
- **R** = Rate at which stars form
- **f_p** = Fraction of stars which have planetary systems
- **n_e** = Number of planets, per planetary system, which are suitable for life
- **f_\ell** = Fraction of suitable planets where life arises
- **f_i** = Fraction of life bearing planets where intelligence develops
- **f_c** = Fraction of planets with intelligent life which develop a technological phase during which there is a capacity for and interest in interstellar communication
- **L** = Average lifetime of communicable civilizations
Treat the Galaxy as a Thin Cylinder
Distance to Nearest Neighbor

1. Assume civilizations spread uniformly but randomly through galaxy

\[r = \text{radius of imaginary sphere centered on us that touches nearest civilization} \]

search vol \(\propto r^3 \)

\[\Rightarrow r = \frac{10^4 \ \ell y}{N^{1/3}} \]
If the Search Sphere gets too big…

If $N < 8000$, r from previous formula is $500 \, \text{ly}$

About equal to thickness of Galaxy

Use cylinder for search vol $\propto r^2 h$

so $r = \frac{5 \times 10^4 \, \text{ly}}{N^{1/2}}$
<table>
<thead>
<tr>
<th></th>
<th>R</th>
<th>f_p</th>
<th>n_e</th>
<th>f_ϵ</th>
<th>f_i</th>
<th>f_c</th>
<th>L</th>
<th>N</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimate</td>
<td>20</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>5 × 10^9</td>
<td>1 × 10^{11}</td>
<td>2.2 ly</td>
</tr>
<tr>
<td>Birthrate</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

62.5% of stars

If \(N > 8000 \),
\[
r = \frac{10^4 \text{ light years}}{N^{1/3}}
\]

If \(N < 8000 \),
\[
r = \frac{5 \times 10^4 \text{ light years}}{N^{1/2}}
\]
<table>
<thead>
<tr>
<th></th>
<th>R</th>
<th>f_p</th>
<th>n_e</th>
<th>f_ξ</th>
<th>f_i</th>
<th>f_c</th>
<th>L</th>
<th>N</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimate</td>
<td>5</td>
<td>0.1</td>
<td>0.1</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>100</td>
<td>5×10^{-6}</td>
<td>---</td>
</tr>
<tr>
<td>Birthrate</td>
<td>5</td>
<td>0.5</td>
<td>0.05</td>
<td>5×10^{-4}</td>
<td>5×10^{-6}</td>
<td>5×10^{-8}</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Never two civilizations at same time

If $N > 8000$,
\[r = \frac{10^4 \text{ light years}}{N^{1/3}} \]

If $N < 8000$,
\[r = \frac{5 \times 10^4 \text{ light years}}{N^{1/2}} \]
Mr. Average Guy (~2000)

<table>
<thead>
<tr>
<th></th>
<th>R</th>
<th>f_p</th>
<th>n_e</th>
<th>f_ℓ</th>
<th>f_i</th>
<th>f_c</th>
<th>L</th>
<th>N</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimate</td>
<td>10</td>
<td>0.5</td>
<td>0.89</td>
<td>0.5</td>
<td>0.7</td>
<td>0.6</td>
<td>1 × 10^6</td>
<td>9.4 × 10^5</td>
<td>100</td>
</tr>
<tr>
<td>Birthrate</td>
<td>10</td>
<td>5</td>
<td>4.45</td>
<td>2.23</td>
<td>1.56</td>
<td>0.94</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

If \(N > 8000 \),
\[
r = \frac{10^4 \text{ light years}}{N^{1/3}}
\]

If \(N < 8000 \),
\[
r = \frac{5 \times 10^4 \text{ light years}}{N^{1/2}}
\]

\(~1 \text{ out of } 1.6 \times 10^5 \text{ stars} \)

\(10 \times 10^5 = 10^6\)
Mr. Average Guy (~2014)

<table>
<thead>
<tr>
<th></th>
<th>R</th>
<th>f_p</th>
<th>n_e</th>
<th>f_ℓ</th>
<th>f_i</th>
<th>f_c</th>
<th>L</th>
<th>N</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimate</td>
<td>12</td>
<td>0.66</td>
<td>0.71</td>
<td>0.32</td>
<td>0.40</td>
<td>0.61</td>
<td>4.6×10^8</td>
<td>2.0×10^8</td>
<td>17</td>
</tr>
<tr>
<td>Birthrate</td>
<td>10</td>
<td>7.9</td>
<td>5.6</td>
<td>1.8</td>
<td>0.72</td>
<td>0.44</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

~1 out of 1500 stars

Note: the birthrate is actually lower than earlier class. The longer lifetime makes all the difference!
Evaluating YOUR Drake Equation

• Almost no answers are wrong
 – It must be possible for us to exist
 – N must be no greater than the number of stars in the Galaxy
 • May imply limit on L

• Ways to evaluate:
 – Plug into equations
 – Use calculator on web
 • http://www.as.utexas.edu/astronomy/education/drake/drake.html
 – Ask us for help
Your Drake Equation

<table>
<thead>
<tr>
<th>R</th>
<th>f_p</th>
<th>n_e</th>
<th>f_\ell</th>
<th>f_i</th>
<th>f_c</th>
<th>L</th>
<th>N</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Birthrate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

If \(N > 8000 \),

\[
r = \frac{10^4 \text{ light years}}{N^{1/3}}
\]

If \(N < 8000 \),

\[
r = \frac{5 \times 10^4 \text{ light years}}{N^{1/2}}
\]
Note log scales
Points to bear in mind

• r is based on assuming spread uniformly
 – Could be less if closer to center of MW
• r is based on averages
 – Could be closer but unlikely
• r is less uncertain than N
• Since signals travel at c, time = distance in ly
• If $L < 2r$, no two way messages