Twin Paradox

- There are twins, A and B
- B moves relative to A
 - A’s point of view
 - B is moving at speed \(v \)
 - B’s clock ticks more slowly by \(\gamma \).
 - Therefore, B appears to be aging more slowly.
 - B’s point of view
 - A is moving at speed \(v \)
 - A’s clock ticks more slowly by \(\gamma \).
 - Therefore, A appears to be aging more slowly.
- So, which one is older, when they meet?
 - Twin Paradox

Case 1 (a different point of view)

- C’s point of view
 - C is moving to the left with respect to the original frame
 - A and B are moving to the right together until event 1.
 - Then A is at rest but B speeds up.
 - A turns around earlier than B.
 - Then B is at rest but A moves to the right faster than before
 - A and B finally meet at event 3.
 - In this case, A’s and B’s worldlines are still symmetric. (point symmetry)
 - A and B have traveled the same spacetime distance; thus, A and B have aged the same years

Case 2

- A remains at rest at all times.
- B leaves home at event 1, turns around at event 2, and finally meets A at event 3.
- In this case, A’s and B’s worldlines are not symmetric!
- What happens?
 - The answer is that A has aged more than B.
- Why?
 - B’s spacetime distance is shorter than A’s
 - Remember, \(ds^2=c^2dt^2-dx^2 \)
Case 2 (a different point of view)

- In C’s frame, A is moving to the left at all times. B is initially moving to the left, together with A.
- B becomes at rest at event 1, and then moves to the left faster than before.
- A and B meet at event 3.
- In this case, A’s and B’s worldlines are still not symmetric!
 - A has aged more than B.
 - B’s spacetime distance is still shorter.

So, what was it?

- Motion of A and B remains completely relative only when both are moving at constant velocity.
 - Motion has to be inertial for a “perfect relativity” to be valid
- However, for two people to know their initial ages and then meet later again, the motion cannot stay inertial ➞ motion is no longer perfectly relative.

They meet here, but they don’t know each other’s initial age