Special Relativity (1905)

- **Two Invariants**
 - Speed of light, c
 - Spacetime distance \(ds^2 = c^2 dt^2 - dx^2 \)
- **Unification of space and time**
 - No absolute space or time exists: *Relativity*
- **Special relativity does not include gravity**
 - Spacetime is not yet Riemannian, but *Minkowskian*

Relativity of Space and Time

- A’s space coordinate, x, does not coincide with B’s, x'. Rather, x is a combination of x' and ct'.
- The same is true for time coordinate.
 - This means that simultaneous events in A’s coordinate would not appear simultaneous in B’s coordinate!
- But, spacetime distance remains unchanged.

Time Dilation and Length Contraction

- When A sees B moving, B’s time interval appears to be longer (clock ticks more slowly; *time dilation*) and B’s length appears to be shorter (*length contraction*). And vice versa.

Intuitive way to understand it

- From your point of view, the ball appears to move faster; however, light cannot travel faster!
- Therefore, it must take light *more time* to come back down to the laser
 - *Time Dilation*
Formulae
\[\gamma = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}} \]

- \(\gamma \) is always greater than 1.
- As \(v \) approaches \(c \), \(\gamma \) becomes large.
- When \(v=c \), \(\gamma \) is infinite.

- B’s unit time in A’s frame equals A’s unit time in A’s frame multiplied by \(\gamma \). (Hence time dilation)
 – Be careful! The time actually elapsed in B’s frame gets shorter because the unit time gets longer.
- B’s unit length in A’s frame equals B’s unit length in B’s frame divided by \(\gamma \). (Hence length contraction)

Mass Increase

- A pushes B (whose mass at rest is \(m \)) by applying a force \(F \).
 – Acceleration is given by \(a=F/m \).
 – Velocity acquired would be \(v=a\ dt=F\ dt/m \)
- When B is moving, the clock ticks more slowly
 – B feels the force for a shorter time
 – \(v'=a\ dt'=F\ dt'/(m\gamma) \)
- Thus, the mass of B appears to be bigger by \(\gamma \!
- Nothing can be accelerated to the speed of light, because the mass becomes infinite.