Curvature

- How curved is it?
 - The radius of an osculating circle can be used to measure curvature of a line at a given point.
 - Curvature = 1/(curvature radius)
 - Curvature is in units of 1/length
 - The signs posted on the road saying “R=300ft” or “R=500ft”
 - Which one is more curved?
 - A straight line (zero curvature) has R=∞

Gaussian Curvature

- Curvature of a surface
 - Draw two principal osculating circles at a given point on the surface
 - Obtain two principal curvature radii, R_1 and R_2
 - Gaussian curvature is given by $1/(R_1 R_2)$, up to the overall sign.
- K=Gaussian curvature
 - K is in units of 1/area

Flat, Spherical, Hyperbolic

- Homogeneous and Isotropic space can be either flat, spherical, or hyperbolic.
 - K is the same everywhere
- Flat
 - Zero K
 - $K=0$
 - Osculating circles on the same side
 - $R_1 = R_2 = \infty$
- Spherical
 - Positive K
 - $K=1/R^2 > 0$
 - Osculating circles on the same side
 - $R_1 = R_2 = R$
- Hyperbolic
 - Negative K
 - $K=-1/R^2 < 0$
 - Osculating circles on opposite sides
 - $R_1 = R_2 = R$

Measuring Curvature

- θ=Sum of the angles of a triangle minus π
 - $\theta=K \times$ (area of triangle)
 - $\theta=0$ (flat)
 - $\theta>0$ (spherical)
 - $\theta<0$ (hyperbolic)
- θ=Change in direction of an arrow through a closed circuit of the “vector transport”
 - $\theta=K \times$ (area enclosed by circuit)
 - This is neat – try it yourself!
Distances in Curved Space

- In flat space (Euclidean space), a distance between two points on a surface is given by
 \((\text{Distance})^2 = (x\text{-int.})^2 + (y\text{-int.})^2\)
 \(ds^2 = dx^2 + dy^2\)
- In curved space (non-Euclidean), Euclidean formula no longer applies:
 \((\text{Distance})^2 = F(x\text{-int.})^2 + 2G(x\text{-int.})(y\text{-int.}) + H(y\text{-int.})^2\)
 \(ds^2 = Fdx^2 + 2Gdxdy + Hdy^2\)
 \(\text{F, G, H : Metric Coefficients}\)
 - Metric coefficients generally depend on \(x\) and \(y\)

Gauss’s Theorema Egregium

- Gaussian curvature is an “intrinsic” one.
 -- We don’t need to know anything about 3rd dimension to measure Gaussian curvature of 2-dimensional space
 * “Flatlanders” can measure curvature of their world (which is 2 dimensional) without knowing anything about the 3rd dimension.
 -- Therefore, we can measure Gaussian curvature of 3-dimensional space without knowing anything about the 4th dimension.
- **Theorema Egregium**
 -- How metric coefficients vary from point to point on a surface contains all the information of the geometry of the surface.

Riemannian Geometry

- Riemann has extended Gauss’s work to four and higher dimensions.
- Metric coefficients have:
 - 3 components in 2d
 - 6 components in 3d
 - 10 components in 10d
 - etc…
- **Riemann curvature:** generalization of Gaussian curvature in higher dimensions.
- Einstein used Riemannian geometry to construct the general theory of relativity.

Spacetime Metric of the Universe

\[ds^2 = c^2 dt^2 - \left(\frac{dR^2}{1 - KR^2} + R^2 (d\alpha^2 + \sin^2 \alpha d\theta^2) \right) \]

- Important question: **What is \(K\)** of the universe?
 -- \(K\) determines curvature of 3-d space in which we are living
- According to Gauss’s theorema egregium, we can measure \(K\), without knowing anything about the 4th dimension.
 -- This implies that the shape of the observable universe can be determined!