- Modification to the Newtonian universe
 - Distribution of stars is not spherical
- Thomas Wright (1711-1786)
 - “An Original Theory of the Universe” (1750)
 - Two models accounting for the Milky Way
 - Many-universe hypothesis
- Immanuel Kant (1724-1804)
 - Adapted one of Wright’s idea: the Milky Way is disky
 - Many-universe: nebulae are other milky ways
- William Herschel (1738-1822)
 - Discovered Uranus
 - His observations of stars showed that the Milky Way was flat.
 - Famous diagram of the Milky Way (1785)

- Distances to the stars were measured assuming:
 - No absorption or attenuation in interstellar space
 - All stars are similar to the Sun
 - Stars are distributed uniformly in space
 - None of the assumptions was correct

- Interstellar absorption and attenuation
 - Distant stars look dimmer because:
 - they are farther away, and
 - their lights are attenuated by interstellar dust.
 - He did not know about the latter, overestimated distances toward the center of the Milky Way
- Stars are different
 - Binary stars (two stars orbiting each other) are at the same distance, but they have different brightness
- Stars are not uniformly distributed
 - The most clouded region does not necessarily imply the most extended region
- After proper corrections, the Sun is not at the center of the Milky Way.
Many or One?

- Pierre Simon de Laplace (1749-1827)
 - Rotation balances gravity
 - The nebular theory of formation of the Solar System
 - One-universe hypothesis
 - only one Milky Way (or galaxy) in the universe, and nebulae are gas clouds forming other solar systems
 - His model remained standard until 1924
 - In 1924, Edwin Hubble showed that Andromeda was far beyond the outer reaches of stars in the Milky Way
- Now we know that what they called “nebulae” included both galaxies and gas clouds.

How was c measured?

- Galileo Galilei
 - Exchange of light between two people separated by one mile – failed to measure c: $c > 333.5 \text{ km/s}$
- Ole Roemer in 1676
 - Eclipse of Io
 - $c = 214,000 \text{ km/s}$
- James Bradley in 1725
 - Aberration of light from stars (41 arc-seconds)
 - $c = 301,000 \text{ km/s}$
- Armand Fizeau in 1849
 - A noble experiment using a rotating cogwheel
 - $c = 315,000 \text{ km/s}$
- Currently accepted value is $c = 299,792.458 \text{ km/s (1972)}$
 - Now used for definition of the meter (1983)