Tuesday, October 27, 2009

Wheeler away next Tuesday - meeting with NASA officials, movie on black holes.

Tonight - Public Lecture on Cosmology by Rashid Sunyaev, ACES 2.302 7:00 PM.

Astronomy in the News?

Pic of the Day - glowing hydrogen gas in Cygnus
**Balloon**

Surface is curved 2 D space

3 D space around the balloon, inside the balloon is *hyperspace* with respect to the 2D surface

Imagine a 2 D creature that can only perceive 2 D space.

2 D creatures can learn all about the curvature of the space they inhabit by doing geometry in 2 D - they never need to know about or care about “hyperspace.”

That’s us in 3 D! There might be 4D (or higher!) hyperspace around us, but we don’t perceive it.

We can, in principle, learn everything we need to know about our 3D Universe by doing 3D observations and experiments in the confines of our own dimensionality, just as 2D creatures could learn of their universe, the surface of the balloon.
Gravity

Still a deep mystery. Objects of different mass fall with the same acceleration.

Explore how Einstein taught us to think about gravity: no force of gravity, but the effect of \textit{curved space}.

Straight line on a curved surface, possible or an oxymoron?

Geometry on the 2D surface of the balloon

Exercises of drawing straight lines
Surface of the Balloon -

What is a straight line, what is not?

What is “inside?” What is “outside?”

Where is the “center?”

What does it mean to go from surface point to surface point “through” the balloon interior?

Real 3 D curved space (for us!!) might curve in a 4 D “hyperspace,” but we do not directly perceive that hyperspace.

Can determine curvature, shape of 3 D real space by doing 3 D geometry.

Do not need to ask about 4 D (but will!)
One Minute Exam

In a curved space:

- Straight lines always connect to themselves
- Straight lines are the shortest distance between two points
- There are no straight lines
- The sum of the interior angles of a triangle is 180 degrees
One Minute Exam

Compared to the two-dimensional surface of a balloon, the inside of the balloon is:

- A two-dimensional hyperspace
- A three-dimensional hyperspace
- A four-dimensional hyperspace
- Accessible to a two-dimensional creature
One Minute Exam

An intelligent ant crawls around on a surface, drawing triangles as the intersection of 3 straight lines. She finds that the sum of the interior angles is always more than 180 degrees and that triangles of the same size always give the same results. She deduces that the following will be true:

- If she draws two straight lines that are initially parallel they will begin to diverge.
- The surface she is walking on is three-dimensional
- If she walks off in a straight line she will never return to her point of origin
- If she walks off in a straight line she will return to her point of origin
Check out

Dr. Quantum in Flatland

Right in spirit, wrong in some essential details. See if you can figure out what those are.

http://youtube.com/watch?v=KhbGYn7aAUk
**Embedding diagram** - 2 D “shadow” of 3 D curved space, preserves basic aspects of geometry, whether curved or not, and, if curved, how.

Meaning of **flat space** in 3 (or higher) dimensions

If 3 D space is flat: \( C=2\pi r \); sum of angles of triangle =180°; parallel beams of light never cross **in 3D**.

*The embedding diagram of 3D flat space is a flat 2D plane*

In curved 3D space, the flat space answers will be wrong: 2D embedding diagram will help to illustrate that.
Embedding diagram:

Real Space  ->  Embedding Diagram Space
Volume (3D)  ->  Surface (2D)
Surface (2D)  ->  Line (1D)
Line (1D)  ->  Point (0D)
Invert balloon - 2 D embedding diagram of curved 3 D space around gravitating object

Properties of this curved space that are preserved in the embedding diagram:

\[ C < 2\pi r \]

Sum of angles of triangle not equal 180° (can be > or <)

Parallel lines diverge or cross