Homework 1 - Handed out Sep. 6, due Tues. Sep. 18

Problem 1 is worth 10 points, problems 2 & 3 are each worth 5 points.

1. Assume the “naive” model of galactic structure discussed in class, which assumes uniform stellar density D (= number of stars per unit volume), that all stars have the same intrinsic luminosity (hence the same absolute magnitude M), and that there is no interstellar extinction.

 (a) Show that the differential star count function $A(m)$ has the same functional form (that is, the same exponential dependence on m) as the integral star count function $N(m)$, and calculate the expressions for $A(m)$ and $N(m)$ explicitly in terms of numerical constants and D.

 (b). Now use the expression you derived in part (a) to predict star counts and compare them to reality, as follows: There are 15 stars brighter than or equal to apparent magnitude $m = +1$ over the entire sky (4π steradians), 520 stars brighter than or equal to $m = +4$, and 4800 stars brighter than or equal to $m = +6$. Calculate the numerical values for the stellar density D for each of these three cases. Assume that all stars have $M\approx+5$ (approximately the value for the Sun).

 (c) Compare your answers to the true local stellar density, $D = 0.13$ stars pc$^{-3}$, and discuss. Of the assumptions made in the model, which is the most incorrect? (Note: Another way of thinking of the naive model is that $D(m)$ represents a volume-averaged density for stars down to limiting magnitude m; discuss the comparison of prediction and observations in these terms.)

2. A star in the constellation Cygnus known as VI Cygni No. 12, has apparent magnitude $V=11.5$ and a measured “color index” $(B-V)=3.2$. Spectroscopy reveals that it is an A0 star, which (by definition!) has intrinsic color $(B-V)_0 = 0.0$. Assuming the standard interstellar extinction curve, such that the extinction at V in magnitudes $A_V = 3.2 E(B-V)$, calculate A_V, and determine what its apparent visual magnitude would be in the absence of extinction. Comment on the result.

3. Interstellar extinction causes an apparent “stretching” of the volume enclosing a sample of stars counted down to a given limiting magnitude, and as a result, causes one to underestimate the stellar density. We will denote the true distance and stellar density by r and $D(r)$ respectively, and the apparent distance and density by ρ and $\Delta(\rho)$ respectively.

 (a) Calculate an algebraic expression for $\Delta(\rho)/D(r)$, if extinction increases linearly with distance, $A(r) = k \cdot r$. (You must show your intermediate steps to get credit for this part of the problem!)

 (b) For $k = 0.75$ mag per kpc, make a table showing the factors by which the distance is overestimated (e.g. list the ratio ρ/r), and the stellar density underestimated (e.g. the ratio Δ/D), for distances of 500 pc, 1 kpc, 2 kpc, 3 kpc, and 5 kpc.