
AST358: Lyman Alpha Emission
In this activity you will learn first-hand the complicated lives which Lyman alpha photons 
live as they try to escape from neutral hydrogen gas in galaxies.  Our physical scenario 
can be summed up by Figure 1:
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We often denote the amount of frequency shift from 
line center using the dimensionless photon frequency 
x, defined by the equation to the right (where thermal 
is the thermal velocity, which is ~15 km/s near star-
forming regions).  Figure 3 shows the cross section 
for absorption of Lyα by hydrogen in units of x (where 
x=0 is line center).  The optical depth for absorption 
is proportional to this cross section:
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In this diagram, the star represents a source of 
Lyman alpha (Lyα) photons.  For simplicity, we will 
assume that all of these photons come out exactly 
at line center (1215.67 Å or 2.46 x 1015 Hz).  We’re 
also going to assume that the photons only move 
in one dimension (labeled as the z-direction - note 
that z has nothing to do with redshift here!).  If we 
were to plot the spectrum of this line, it would look 
something like Figure 2.

Part 1: If you were to observe the photons from 
Figure 2 through the gas cloud from the 
position shown in Figure 1, what do you think 
the observed emission line profile would look 
like?  Remember two things: first, gas particles 
have random motions with a velocity dispersion 
given by vthermal.  Second, when Lyα is 
absorbed, it is almost immediately re-emitted, 
only now in the rest-frame of the absorbing 
atom.   Draw this in the empty figure to the right 
(focus on the shape - you may approximate the 
wavelengths):
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Part 2: Now, you will work out for yourself what this line profile should look like.  While 
this activity is somewhat simplified from state-of-the-art supercomputer simulations, it is 
not all that different from those calculations which were done ~50 years ago.  You will 
empirically derive the observed Lyman alpha emission profile our friend with the 
telescope in Figure 1 would see, by building up the distribution of frequencies for 
photons which escape the gas slap.  In the one dimension we’re considering, photons 
can escape the cloud if they reach a distance in the z-direction of unity (z=1).  At that 
point, they stream through space to our telescopes without changing frequency.

Each group will simulate 10 photons until escape (z=±1), and when done, will add 
their results (the dimensionless frequency, x, at escape) to the plot on the white board.  
Together as a class, we will discover if your predictions of the shape of the observable 
Lyman alpha emission line was correct.

Each photon will start at line center (x=0), and at the center of the slab (z=0).  You will 
then use game-board spinners to simulate the shifting in frequency and in space (known 
as diffusion) caused by the resonant scattering, learning what the frequency of the 
photons are by the time they escape.  

One simplification we will make is that anytime a photon is in the line “core” (|x| < 3), we 
will move it out beyond the core to x = ±4.  To decide whether x is positive or negative, 
spin the spinner labeled “uniform”; set the sign of your new value of x to the sign of the 
value on the spinner.  If the frequency is out of the core (|x| > 3), then the new value of x 
(which I’ll call xi, denoting the value of x at iteration i) is given by:

The variable G is a randomly drawn value from a Gaussian distribution - you will get this 
value by flicking the “Gaussian” spinner.  This Gaussian random process represents the 
random motion of the particles of the gas (some are moving faster than others).

xi = xi�1 �
1

xi�1
+GEquation 1:



For each photon, after you calculate its new dimensionless frequency (xi) after 
scattering, you will use the new frequency to figure out how far the photon moves before 
it scatters again.  The further a photon is from line center, the farther it can move before 
it scatters again.  We will denote this distance gain as dz, so the new position zi is:

The distance gain dz depends on somewhat complicated radiative transfer physics (i.e., 
we’d need a lot more spinners), so I’ve gone ahead and tabulated dz(|x|) for you on the 
next page.  For a given value of x, grab the value of dz off this table.  As you might 
expect, dz gets larger for larger values of |x|, as the photon is farther from the line core.  
The values of dz in the table are always positive, but the photon has an equal chance of 
scattering forwards or backwards, so we need to spin the random spinner to get a sign 
again, which you will apply to the value of dz.
You will then repeat this process again and again (and again and again), until |z| > 1.  At 
this point, the photons escapes, and you’ll record the value of x on the board.
Here is a quick example of the journey of a Lyα photon, highlighted in the table below:
Scatter #1: We start at (x,z)=(0,0),  As I’m in the core, I immediately move out to ±4; I 
spin the uniform spinner to decide if x is positive or negative — it lands on a negative 
value, so I set x = -4.  To calculate my new position, I find dz(x=4) from the table, which 
is 0.284.  I then spin the uniform spinner to see whether I move forwards or backwards, 
and find +0.65; I don’t care about this value, just the sign, which is positive.  I then 
calculate my new value of z using Eqn 2, finding z=0.284.  I record this in the table.  
Scatter #2: For the next scattering, I’m out of line center, so I use Eqn 1 to find my new 
value of x.  I spin the Gaussian spinner, which lands on 0.524, so xi = -3.23 (ack, 
moving back towards line center!).  The value of dz at this x is 0.182, and I spin the 
uniform spinner getting +0.55, so Eqn 2 gives zi=0.466.  

Scatter #3: I spin and get G=-0.994, giving xi=-3.91. At this x, dz=0.27, and I spin the 
uniform spinner getting 0.20, so Eqn 2 gives zi=0.736 (working our way out!).  

Scatter #4: I spin and get G=-0.772, giving xi=-4.42. At this x, dz=0.334, and I spin the 
uniform spinner getting a negative value, so we move backwards! Eqn 2 gives zi=0.402.  

Scatter #5: I spin and get G=-0.706, giving xi=-4.90. At this x, dz=0.427, and I spin the 
uniform spinner getting a positive value (+0.60), so Eqn 2 gives zi=0.829.

Scatter #6: I spin and get G=-1.175, giving xi=-5.87. At this x, 
dz=0.619, and I spin the uniform spinner getting a positive value 
(+0.30), so Eqn 2 gives zi=1.448.  So, this photon escapes!!  I did get 
a little lucky, as I only moved backwards one time, so I expect it to 
take more like 10 scattering events per photon on average for you.

Guided by this example, work through ten photons until escape, 
and mark their x-value at escape (when z > 1) on the board.

# 
Scatters

x z

0 0 0

1 -4.000 0.284

2 -3.23 0.466

3 -3.91 0.736

4 -4.42 0.402

5 -4.90 0.829

6 -5.87 1.448

Equation 2: zi = zi�1 ± dz(xi)
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We’ll do this one together as a 
class - do *not* record it on 

the board.
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|x|     dz(|x|)
3.0   0.160
3.1   0.170
3.2   0.181
3.3   0.193
3.4   0.205
3.5   0.217
3.6   0.230
3.7   0.243
3.8   0.256
3.9   0.270
4.0   0.284
4.1   0.298
4.2   0.313
4.3   0.328
4.4   0.343
4.5   0.359
4.6   0.375
4.7   0.392
4.8   0.408
4.9   0.426
5.0   0.443
5.1   0.461
5.2   0.479
5.3   0.498
5.4   0.517
5.5   0.536
5.6   0.556
5.7   0.576
5.8   0.596
5.9   0.617
6.0   0.638
6.1   0.660
6.2   0.681
6.3   0.703
6.4   0.726
6.5   0.749
6.6   0.772
6.7   0.796

#x      dz(|x|)
6.8   0.820
6.9   0.844
7.0   0.869
7.1   0.893
7.2   0.919
7.3   0.945
7.4   0.971
7.5   0.997
7.6   1.024
7.7   1.051
7.8   1.078
7.9   1.106
8.0   1.134
8.1   1.163
8.2   1.192
8.3   1.221
8.4   1.251
8.5   1.281
8.6   1.311
8.7   1.342
8.8   1.373
8.9   1.404
9.0   1.436
9.1   1.468
9.2   1.500
9.3   1.533
9.4   1.566
9.5   1.600
9.6   1.633
9.7   1.668
9.8   1.702
9.9   1.737
10.0   1.772
10.1   1.808
10.2   1.844
10.3   1.880
10.4   1.917
10.5   1.954

Use these tables to get the value 
of dz (the shift in position) for a 

given value of x.  Note that it 
doesn’t matter whether x is positive 

or negative, so the value of dz is 
the same for +x or -x.

Remember, to calculate z, you 
need to spin the uniform spinner to 

see whether the photon moves 
forwards or backwards.

xi = xi�1 �
1

xi�1
+G

Equation 1:

unless |xi-1| < 3, then xi = ±4.

Equation 2:

zi = zi�1 ± dz(xi)


