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Problems
3.1 [1] Show that the radial velocity along a Kepler orbit is
GM
€ sin(y — o), (3.324)

where L is the angular momentum. By considering this expression in the limit » — oo
show that the eccentricity e of an unbound Kepler orbit is related to its speed at infinity

by
L 2
= s ( ”°°> . (3.325)
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3.2 [1] Show that for a Kepler orbit the eccentric anomaly 1 and the true anomaly ) — /g
are related by

cos( — o) = ——T_° . sin(yp — ) = V1 — P L, (3.326)
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3.3 [1] Show that the energy of a circular orbit in the isochrone potential (2.47) is E =
—GM/(2a), where a = Vb2 + 12, Let the angular momentum of this orbit be L¢(E).
Show that 555
c = VGMb (3371/2 - z1/2) J where T=———0:. (3.327)
GM
3.4 [1] Prove that if a homogeneous sphere of a pressureless fluid with density p is released
from rest, it will collapse to a point in time tg = %\/37/(2Gp). The time tg is called the
free-fall time of a system of density p.

3.5 [3] Generalize the timing argument in Box 3.1 to a universe with non-zero vacuum-
energy density. Evaluate the required mass of the Local Group for a universe of age
to = 13.7Gyr with (a) Qa9 = 0; (b) Q¢ = 0.76, h7 = 1.05. Hints: the energy density
in radiation can be neglected. The solution requires evaluation of an integral similar to
(1.62).

3.6 [1] A star orbiting in a spherical potential suffers an arbitrary instantaneous velocity
change while it is at pericenter. Show that the pericenter distance of the ensuing orbit
cannot be larger than the initial pericenter distance.

3.7 [2] In a spherically symmetric system, the apocenter and pericenter distances are given
by the roots of equation (3.14). Show that if E < 0 and the potential ®(r) is generated
by a non-negative density distribution, this equation has either no root, a repeated root,
or two roots (Contopoulos 1954). Thus there is at most one apocenter and pericenter for
a given energy and angular momentum. Hint: take the second derivative of E — ® with
respect to u = 1/r and use Poisson’s equation.

3.8 [1] Prove that circular orbits in a given potential are unstable if the angular momentum
per unit mass on a circular orbit decreases outward. Hint: evaluate the epicycle frequency.

3.9 [2] Compute the time-averaged moments of the radius, (r™), in a Kepler orbit of
semi-major axis a and eccentricity e, for n = 1,2 and n = —1, -2, —3.
3.10 [2] A%y denotes the increment in azimuthal angle during one complete radial cycle
of an orbit.
(a) Show that in the potential (3.57)

2L
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where r, and 7, are the apo- and pericentric radii of an orbit of energy E and angular

momentum L. Hint: by contour integration one can show that for A > 1, fl/jg do/(A+

sinf) = n /A2 — 1.

Adp = (3.328)
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(b) Prove in the epicycle approximation that along orbits in a potential with circular
frequency Q(R),

(3.329)
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(c) Show that the exact expression (3.328) reduces for orbits of small eccentricity to (3.329).
3.11 [1] For what spherically symmetric potential is a possible trajectory r = aeb¥?

3.12 [2] Prove that the mean-square velocity is on a bound orbit in a spherical potential

d(r) is
(@?) = <rd£> , (3.330)

where (-) denotes a time average.

3.13 [2] Let r(s) be a plane curve depending on the parameter s. Then the curvature is
Irl X rII|

= S 3.331

e (3:331)

where r’ = dr/ds. The local radius of curvature is K —1. Prove that the curvature of an
orbit with energy E and angular momentum L in the spherical potential ®(r) is
T Ld®/dr
T 23/2¢[E — &(r)]3/2°
Hence prove that no orbit in any spherical mass distribution can have an inflection point
(in contrast to the cover illustration of Goldstein, Safko, & Poole 2002).

(3.332)

3.14 [1] Show that in a spherical potential the vertical and circular frequencies v and Q
(egs. 3.79) are equal.

3.15 [1] Prove that at any point in an axisymmetric system at which the local density
is negligible, the epicycle, vertical, and circular frequencies &, v, and Q (egs. 3.79) are
related by k2 4 2 = 2Q2.

3.16 [1] Using the epicycle approximation, prove that the azimuthal angle A between
successive pericenters lies in the range m < Ay < 27 in the gravitational field arising from
any spherical mass distribution in which the density decreases outwards.

3.17 [3] The goal of this problem is to prove the results of Problem 3.16 without using
the epicycle approximation (Contopoulos 1954).
(a) Using the notation of §3.1, show that
L2
E-%— —
2r2
where u; = 1/r1 and up = 1/r2 are the reciprocals of the pericenter and apocenter
distances of the orbit respectively, w = 1/r, and

L el b o) = Blua)]

Ul — U Uy —u U — u2

= (u1 —u)(u — uz) {1 L? + ®[u, u1,u2] }, (3.333)

Dlu,ui,ug] = (3.334)
This expression is a second-order divided difference of the potential ® regarded as a func-
tion of u, and a variant of the mean-value theorem of calculus shows that ®[u,u1,u2] =
%@’ '(w) where @ is some value of w in the interval (u1,uz). Then use the hint in Prob-
lem 3.7 and equation (3.18b) to deduce that Ay < 2w when the potential ® is generated
by a non-negative, spherically symmetric density distribution.
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(b) A lower bound on A can be obtained from working in a similar manner with the
function

2wP L
x(w) = L, where w= —. (3.335)
L r2
Show that
2wE 2
7 xW) —wt = (w1 —w)(w - w2) {1 + x[w, w1, w2} (3-336)

where w1 = L/r%, wy = L/r3 and x[w,w1,ws] is a second-order divided difference of x(w).
Now deduce that At > 7 for any potential in which the circular frequency Q(r) decreases
outwards.

3.18 [1] Let ®(R, z) be the Galactic potential. At the solar location, (R,z) = (Rjg,0),
prove that

0%® 5 8

57 = 4wGpo + 2(A° — B#), (3.337)
where pg is the density in the solar neighborhood and A and B are the Oort constants.
Hint: use equation (2.73).

3.19 [3] Consider an attractive power-law potential, ®(r) = Cr®, where —1 < o < 2 and
C >0 for a >0, C <0 for a < 0. Prove that the ratio of radial and azimuthal periods is

1/vV2+« for nearly circular orbits
5 V{in for a > 0 (3.338)
Ty { for nearly radial orbits.
1/2+a), fora<0

What do these results imply for harmonic and Kepler potentials?
Hint: depending on the sign of o use a different approximation in the radical for v,. For

b>0, [[°dz/(xy/zb — 1) = w/b (see Touma & Tremaine 1997).

3.20 [1] Show that in spherical polar coordinates the Lagrangian for motion in the poten-
tial ®(x) is ) ]

L= 1+ (r6)* + (rsin6¢)?] — ®(x). (3.339)

Hence show that the momenta pg and py are related to the the magnitude and z-component
of the angular-momentum vector L by

2 2 L3
=L, 3 =L*— Z_,
Pe 5 Po sin® @

(3.340)

3.21 [3] Plot a (y,y), (z =0, & > 0) surface of section for motion in the potential ®;, of
equation (3.103) when ¢ = 0.9 and E = —0.337. Qualitatively relate the structure of this
surface of section to the structure of the (z, %) surface of section shown in Figure 3.9.

3.22 [3] Sketch the structure of the (z,4), (y = 0, ¢ > 0) surface of section for motion
at energy F in a Kepler potential when (a) the (z,y) coordinates are inertial, and (b)
the coordinates rotate at 0.75 times the circular frequency €2 at the energy E. Hint: see
Binney, Gerhard, & Hut (1985).

3.23 [3] The Earth is flattened at the poles by its spin. Consequently orbits in its potential
do not conserve total angular momentum. Many satellites are launched in inclined, nearly
circular orbits only a few hundred kilometers above the Earth’s surface, and their orbits
must remain nearly circular, or they will enter the atmosphere and be destroyed. Why do
the orbits remain nearly circular?

3.24 [2] Let é; and &2 be unit vectors in an inertial coordinate system centered on the
Sun, with &; pointing away from the Galactic center (towards £ = 180°, b = 0) and &
pointing towards £ = 270°, b = 0°. The mean velocity field v(x) relative to the Local
Standard of Rest can be expanded in a Taylor series,
2
v; = ZHij:cj + O(EZ) (3.341)
j=1
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(a) Assuming that the Galaxy is stationary and axisymmetric, evaluate the matrix H in
terms of the Oort constants A and B.

(b) What is the matrix H in a rotating frame, that is, if € continues to point to the center
of the Galaxy as the Sun orbits around it?

(c) In a homogeneous, isotropic universe, there is an analogous 3 x 3 matrix H that de-
scribes the relative velocity v between two fundamental observers separated by x. Evaluate
this matrix in terms of the Hubble constant.

3.25 [3] Consider two point masses m1 and m2 > m1 that travel in a circular orbit about
their center of mass under their mutual attraction. (a) Show that the Lagrange point L4
of this system forms an equilateral triangle with the two masses. (b) Show that motion
near Ly is stable if my/(m1 + ma) < 0.03852. (c) Are the Lagrange points L1, L2, L3
stable? See Valtonen & Karttunen (2006).

3.26 [2] Show that the leapfrog integrator (3.166a) is second-order accurate, in the sense
that the errors in q and p after a timestep h are O(h3).

3.27 [2] Forest & Ruth (1990) have devised a symplectic, time-reversible, fourth-order
integrator of timestep h by taking three successive drift-kick-drift leapfrog steps of length
ah, bh, and ah where 2a + b = 1. Find @ and b. Hint: a and b need not both be positive.

3.28 [2] Confirm the formulae for the Adams-Bashforth, Adams-Moulton, and Hermite
integrators in equations (3.169), (3.170), and (3.171), and derive the next higher order
integrator of each type. You may find it helpful to use computer algebra.

3.29 [1] Prove that the fictitious time 7 in Burdet-Heggie regularization is related to the
eccentric anomaly 1 by 7 = (Ty./2ma)n + constant, if the motion is bound (B2 < 0) and
the external field g = 0.

3.30 [1] We wish to integrate numerically the motions of N particles with positions x;,
velocities v;, and masses m;. The particles interact only by gravitational forces (the gravi-
tational N-body problem). We are considering using several possible integrators: modified
Euler, leapfrog, or fourth-order Runge-Kutta. Which of these will conserve the total mo-
mentum Zf;l m;v;? Which will conserve the total angular momentum Zfil miX; X vi?
Assume that all particles are advanced with the same timestep, and that forces are calcu-
lated exactly. You may solve the problem either analytically or numerically.

3.31 [2] Show that the generating function of the canonical transformation from angle-
action variables (6;, J;) to the variables (g;, p;) discussed in Box 3.4 is

S(q,J) = FLqv/2T — @ £ Jeos™ (\/%_J (3.342)

3.32 [1] Let ¢(R) and 4(R) be the specific energy and angular momentum of a circular
orbit of radius R in the equatorial plane of an axisymmetric potential.

(a) Prove that
d¢  Rk? d
& S _1Re?, (3.343)
dR 2Q dR
where Q and k are the circular and epicycle frequencies.
(b) The energy of a circular orbit as a function of angular momentum is €(£). Show that
de/de = Q in two ways, first from the results of part (a) and then using angle-action
variables.

3.33 [2] The angle variables 6; conjugate to the actions J; can be implicitly defined by the
coupled differential equations dwea /df; = [wa, Ji], where wq is any ordinary phase-space



