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For a homogeneous sphere of radius a, g = %a.

From equation (2.28) the gravitational potential of a homogeneous sphere
of radius a is
—2nGp(a® — 3r?) (r <a),
®(r) = 4rGpa? (2.43)
e )

(c) Plummer model We might expect that in many spherical systems
the density is roughly constant near the center, and falls to zero at large
radii. The potential of a system of this type would be proportional to r? +
constant at small radii and to 7~ at large radii. A simple potential with
these properties is the Plummer model

GM

The linear scale of the system that generates this potential is set by the
Plummer scale length b, while M is the system’s total mass.
From equation (B.53) for V2 in spherical polar coordinates we have

1d ( dcp) - 3GMb? (2.45)

T (r2 4 b2)5/2°

Thus from Poisson’s equation (2.10) we have that the density corresponding
to the potential (2.44a) is

3M r2\ /2
pr) = o ba( +b—2) : (2.44b)

The potential energy of a Plummer model is

3rGM?

W=-—3%

(2.46)

Plummer (1911) used the potential-density pair that is described by
_ equations (2.44) to fit observations of globular clusters. We shall encounter
it again in §4.3.3a as a member of the family of stellar systems known as
~ polytropes.

(d) Isochrone potential The position of a star orbiting in a Plummer

~ potential cannot be given in terms of elementary functions. However, in
Chapter 3 we shall see that all orbits are analytic in the isochrone potential

GM

Bfr) = e
Ty e

(2.47)
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for then equations (3.68a) become
I = —kK-x, (3.78a)

E= 1z (3.78b)

According to these equations, 2 and z evolve like the displacements of two
harmonic oscillators, with frequencies & and v, respectively. The two frequen-
cies 1 and v are called the epicycle or radial frequency and the vertical
frequency. If we substitute from equation (3.68h) for ®.g we obtain®

‘ el 3L% %P 3 [0
K (Ry) = <(—~) + === <—> + — (—) . (3.792)
‘ OR? Jip oy H2 OR? )iy o) Rs \OR )iz, )

: 92
(R, = <(‘>~z ) , (3.791)
927 J(R0)

Since the circular frequency is given by

9 1 [0d L
QO (R) == | == = ey 3.79¢
(R) R (()R>(HJ)> A ( 9(')
cquation (3.79a) may be written
2 e’ 2
“(Ry) = ——— + 4Q* . 3.8(
K4(Ry) < in + )Ru (3.80)

Note that the radial and azimuthal periods (eqgs. 3.17 and 3.19) are simply

2 2
= - (3.81)

Very near the center of a galaxy, where the circular speed rises approx-
mately linearly with radius, 2 is nearly constant and £ ~ 2Q). Elsewhere ()
Jdeclines with radius, though rarely faster than the Kepler falloff, {2 oc R~32
which yields & = €. Thus, in general,

A

Q<K <2 (3.82)

2

| sing equations (3.19) and (3.81), it is easy to show that this range is con-
stent with the range of Ay given by equation (3.41) for the isochrone
polential.

% The formula for the ratio x2/Q? from equations (3.79) was already known to Newton:
< ’roposition 45 of his Principia.
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or
1
qﬁ ~ ¢4 (2 — q—2—> (r > R.). (2.72b)
o

Outside the core, the flattening 1 — ¢q¢ of the potential is only about a third
that of the density distribution: 1 —ge =~ :]5-(1 —g,). The density p1, becomes
negative on the z axis when ¢ < 1/4/2 = 0.707.

2.3.3 Poisson’s equation in very flattened systems

In any axisymmetric system with density p(R, z), Poisson’s equation can be
written (eq. B.52)

0%® 10
922 = 47I‘Gp(R, Z) - EB—R (RFR) y (273)
where Fr = —0®/0R is the radial force. Now consider, for example, the

Miyamoto-Nagai potential-density pair given by equations (2.69). As the
parameter b — 0, the density distribution becomes more and more flattened,
and at fixed R the density in the plane z = 0 becomes larger and larger as
b~1. However, the radial force Fr remains well behaved as b — 0; indeed,
in the limit b = 0, Fr = —0®k/OR, where Pk (R, z) is simply the Kuzmin
potential (2.68a). Thus, near z = 0 the first term on the right side of equation
(2.73) becomes very large compared to the second, and Poisson’s equation
simplifies to the form

820(R, 2)

52 4rGp(R, z). (2.74)

This result applies to almost any thin disk system. It implies that the vertical
variation of the potential at a given radius R depends only on the density dis-
tribution at that radius. Effectively, this means that the solution of Poisson’s
equation in a thin disk can be decomposed into two steps: (i) Approximate
the thin disk as a surface density layer of zero thickness and determine the
potential in the plane of the disk ®(R,0) using the models of this section
or the more general techniques of §2.6. (ii) At each radius R solve equation
(2.74) to find the vertical variation of ®(R, z).
Thus we have
®(R,z) = ®(R,0) + ®.(R, 2) (2.75a)

where
®.(R,2) = 47rG/ dz'/ dz"p(R,2") + a(R)z. (2.75b)
0 0

The constant of integration, a, is zero if the disk is symmetric around the
equatorial plane.
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If we evaluate the coeflicient of the small quantity = at Ro rather than Rg,
we introduce an additional error in v4(Ro) which is of order 22 and therefore
negligible. Making this approximation we find

vg(Ro) — ve(Ro) ~ —x (29 + R%)RO X (3.96¢)

Finally using equations (3.83) to introduce Oort’s constants, we obtain
K K
vy (Ro) — ve(Ro) ~ 2Bz = ;1; = ;X cos(kt + ). (3.97)

Averaging over the phases a of stars near the Sun, we find

K2X?
22

[vp — ve(Ro)]? = =2B2X2, (3.98)

Similarly, we may neglect the dependence of x on R, to obtain with equation
(3.84)

v% = 1k°X? = ~2B(A - B)X*. (3.99)

Taking the ratio of the last two equations we have

[vg — ve(Ro)]? —-B B _ K} —2
— ~ === ~ (.46. 3.100
oL A-B - GOy 4B A (3.100)

In §4.4.3 we shall re-derive this equation from a rather different point of view
and compare its predictions with observational data.

Note that the ratio in equation (3.100) is the inverse of the ratio of the
mean-square azimuthal and radial velocities relative to the guiding center:
by (3.95)

=

2
i % — 2, (3.101)

Rl sl

This counter-intuitive result arises because one measure of the RMS tangential
velocity (eq. 3.101) is taken with respect to the guiding center of a single star,
while the other (eq. 3.100) is taken with respect to the circular speed at the
star’s instantaneous radius.

This analysis also leads to an alternative expression for the integral of
motion Hg defined in equation (3.86). Eliminating x using equation (3.97),
we have

Hp = §* + $7*[vg(Ro) — ve(Ro)]* (3.102)
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Figure 3.9 The (z, %) surface of section formed by orbits in @1, of the same energy as the
orbits depicted in Figure 3.8. The isopotential surface of this energy cuts the long axis at
z = 0.7. The curves marked 4 and 1 correspond to the box and loop orbits shown in the
top and bottom panels of Figure 3.8.

the thickness of the rosette formed by an orbit of given energy in a planar
axisymmetric potential depends on its angular momentum. This analogy
suggests that stars on loop orbits in @1, may respect an integral that is some
sort of generalization of the angular momentum pg.

We may investigate these orbits further by generating a surface of sec-
tion. Figure 3.9 is the surface of section y = 0, § > 0 generated by orbits
in @, of the same energy as the orbits shown in Figure 3.8. The boundary
curve in this figure arises from the energy constraint

142 + @1 (x,0) < 3(&% + %) + @1(2,0) = Hy—o. (3.106)

Each closed curve in this figure corresponds to a different orbit. All these
orbits respect an integral I in addition to the energy because each orbit is
confined to a curve.

There are two types of closed curve in Figure 3.9, corresponding to
the two basic types of orbit that we have identified. The lower panel of
Figure 3.8 shows the spatial form of the loop orbit that generates the curve
marked 1 in Figure 3.9. At a given energy there is a whole family of such
orbits that differ in the width of the elliptical annuli within which they are
confined—see Figure 3.10. The unique orbit of this family that circulates in



