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proportional to L). Thus the spatial resolution of the force field that
one obtains from ® is very large near the center of the system, and this
makes the multipole expansion ideal for simulations of highly centrally
concentrated systems such as elliptical galaxies. It can also be adapted
to handle colliding galaxies.

Van Albada (1982), Villumsen (1982), and McGlynn (1982, 1984)
have all performed N-body simulations using multipole expansions.
McGlynn (1982) discusses some refinements that help to reduce two-
body relaxation in simulations of this type and minimize problems that
can arise from an unfortunate choice of center. This approach to find-
ing the forces acting in N-body simulations can be extended to schemes
using expansions in other coordinate systems such as cylindrical and
bispherical coordinates (Villumsen 1984; Piran & Villumsen 1987).

Problems

2-1. [1] Astronauts orbiting an unexplored planet find that (i) the surface of
the planet is precisely spherical; and (ii) the potential exterior to the plane-
tary surface is ® = —~GM /r exactly, that is, there are no non-zero multipole
moments of higher order than the monopole. Can they conclude from these ob-
servations that the mass distribution in the interior of the planet is spherically
symmetric? If not, give a simple example of a nonspherical mass distribution
that would reproduce the observations.

2-2. [1] Show that the gravitational potential energy of a spherical system

can be written 5
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where M(r) is the mass interior to radius r.

2-3. (1) Show that the potential generated by the spherical density distribution
(Jaffe 1983)
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where M and r; are constants. Verify that the total mass of the system is M.
Show that the circular speed is approximately constant at r < r, and falls

{ﬂfa.scv,:ocr_’if at r>ry.
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2-4. [1] Prove that the Chandrasekhar potential energy tensor for any spher-
ical body has the form Wj = %W&ik, where W is the potential energy.
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2-5. [1] Defining prolate spheroidal coordinates (u,v) by R = asinhusinv,
2 = acosh u cos v, where a is a constant, show that R2+(a+|z[)2 = a2(cosh u+
|cosv|)2. Hence show that the potential (2-49a) of Kuzmin’s disk can be

written i v)__(GM)M
KV = a ) sinh®u +sin®v’

In §3.5 we show that this potential is an example of a Stéckel potential, in
which orbits admit an extra isolating integral.

(2P-3)

2-6. [2] Consider an axisymmetric body whose density distribution is p(R, z)
and total mass is M = [ p(R, z)d®r. Assume that the body has finite extent
[p(R,z) = 0 for r2 = R? + 22 > r2_ ] and is symmetric about its equator,
that iS, ,O(R‘—Z] = p{RI ZJ.

(a) Show that at distances large compared to rmax, the potential arising from
this body can be written in the form
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where the fractional error is of order (rmax/r)? smaller than the second term.
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(b) Show that at large distances from an exponential disk with surface density
¥(R) = Ly exp(—R/Ry), the potential has the form
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where M is the mass of the disk.

2-7. [2] Prove that the external potentials and force fields of any two confocal
spheroids of uniform density and equal mass are everywhere the same.

2-8. [2] Use equation (2-99) to show that a prolate body with density p =
po(1 + R?/a? + 22/a)~2, where a3 > a;, generates the potential

00 Va2 +Tdr
— 2 3 i
L rGa1a3pgfo (r+a3+A)(r+a3+p)’ @

where (u,v) are oblate spheroidal coordinates defined by equation (2-58) with
A2 = a% - a,%, and we have written A = A2 sinh? u, p = —A2 cos? v. Decom-
pose the integral in (2P-6) into partial fractions to show (without evaluating
the integrals) that @ is of the special Stéckel form discussed in §3.5. Finally,
show that
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where
f(z) = zarctan(z/a3). (2P-7b)

[Hint: To ensure convergence of the integrals, you may wish to add (7+ ag)_ﬁ
to one of the integrands and subtract it from the other.] De Zeeuw (1985)
calls the body with this potential the perfect prolate spheroid, because it is the
only prolate axisymmetric density distribution of constant ellipticity whose
potential is of the Stackel form.



Problems 101

2-9. [2] Show that the analog to equation (2-159) that relates the potential
®(R, ¢, 2) to the surface density £(R, ¢) for a non-axisymmetric disk is
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where Jun (1) is the cylindrical Bessel function of order m.

2-10. [2] The purpose of this problem is to reproduce an elegant method
due to Schwarzschild (1954) of evaluating the potential energy W of a finite
spherical system that has a constant mass-to-light ratio Y.

(a) Show that the surface brightness I(R) and luminosity density j(r) are
related by the formula
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(b) Invert equation (2P-9) using Abel’s formula [see eq. (1B-59)] to obtain
1 f°° dI(R) dR
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(¢) The strip brightness S(z) is defined so that S(z)dz is the total luminosity
in a strip of width dz that passes a distance = from the projected center of
the system. Show that

= [(R)RdR

S(I)=2-/:;- W.

(d) Show that the strip brightness and luminosity density are related by
1 dS(z)

(2P-11)
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(e) Prove that the mass interior to radius r is given by
M(r) =2t [ o (2P-13)
- .- :
(f) Using equation (2-130) for W show that
oo
W = —2GT2 f $2(z) da. (2P-14)
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This result was used by Schwarzschild and Bernstein (1955) in one of the first
measurements of the mass-to-light ratio of a globular cluster. It is less popular
nowadays because the computation of W can be carried out numerically, and
because strip brightnesses are difficult to measure accurately in the presence
of background stars.
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2-11. [3] We have derived relations between the potential and surface density
of non-axisymmetric disks by solving Laplace’s equation in oblate spheroidal
coordinates [see §2.6.4(a)] and cylindrical coordinates (Problem 2-9). Derive
a relation of this kind by solving Laplace’s equation in spherical coordinates,
and show that the result is identical with the formula Kalnajs derived using
logarithmic spirals [eq. (2-189)]. [Hint: You may need associated Legendre
functions P*(x), where X is a complex number. Equations (1C-18) and (1C-
7) may also)\be helpful.]

2-12. [3] Show that the circular speed vc(R) in a thin axisymmetric disk of
surface density £(R) may be written in the form (Mestel 1963)

vZ(R) = Gbg(R) +2G Z Qo [(2k+ 1)R—(2k+l)f SRR R/
k_
—2kR2kj E(R")R"_%dR],
R
(2P-15)
where
2k)!

o = [22(k(;3!)2] * (2P-16)

[Hint: Start with equation (2-139) and expand |x — x’|~! in Legendre poly-
nomials using equation (1C-23).]

2-13. [3] (Suggested by H. Dejonghe) Prove that the surface density ¥(z,y)
and potential ®(z,y) in a disk occupying the z = 0 plane are related by
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(Hint: You may wish to use the results of §5.3.1.)





