ASTRO 381: HOMEWORK 3

Assigned on Wed Apr 25. Due by Th May 10, 5 pm.

GD refers to the class textbook "Galactic Dynamics" by J. Binney \& S. Tremaine (1987; Princeton University Press). The number of points for each question is indicated in brackets.

1. GD, problem 3-12 [$\mathbf{1 5} \mathbf{~ p t s}$]
2. On the class website (http://www.as.utexas.edu/ $\sim \mathrm{sj} / \mathrm{a} 381 \mathrm{c}-\mathrm{sp} 07 /$) you will find a text file "vrot.txt" showing the rotation curve (radius R in kpc , rotation velocity V in km / s) of a weakly barred spiral galaxy, which is at a distance of 20 Mpc .
a) Assume for simplicity that V is equal to the circular speed V_{c} (i.e, do not correct for noncircular streaming motions and interpolation errors). Derive and plot the angular frequency Ω (defined as $\left.V_{\mathrm{c}} / R\right)$, the epicyclic frequency $\kappa,(\Omega-\kappa / 4)$, and $(\Omega-\kappa / 2)$ as a function of radius R. [20 pts].
b) Structural decomposition of a near-infrared image of this galaxy shows that it hosts a weak bar at a radius of 35 arcseconds. Bars are expected to end between the $4: 1$ ultraharmonic resonance (UHR) and the corotation resonance (CR) due to the presence of chaotic orbits near the CR. Estimate lower and upper limits on the bar pattern speed Ω_{p} in km per second per kpc. [$\mathbf{5} \mathbf{~ p t s] . ~}$
c) HST images of this galaxy shows a nuclear ring of intense star formation. Explain the possible origin of such a ring. Estimate the radii between which you would expect it to lie, assuming that the bar pattern speed is equal to the lower limit you calculated in (b). [10 $+\mathbf{5} \mathbf{~ p t s}]$.
3. GD, problem 7-3 [$\mathbf{1 5} \mathbf{~ p t s}$]
4. GD, problem 7-7 [$\mathbf{1 5} \mathbf{~ p t s}$]
5. GD, problem 7-8 [$\mathbf{1 5} \mathbf{~ p t s}]$
