Recent and Future Topics in class

-- Recap: Course Overview and Basic Math Skills

-- Natural units in Astronomy

-- Overview of Astronomical Objects
 Building blocks of matter: protons, electron, neutrons, and atoms
 Stars
 Brown Dwarfs, Planets, and Moons
 Death of Stars: Planetary Nebulae, White Dwarfs, Supernovae remnants
 Why is human life `star stuff’?
 Different Type of Nebulae: Star-forming nebulae vs Planetary nebulae
 Galaxies and the Milky Way

-- Scales and Distances: From the infinitesimal to the grandest
-- Angular scales and sizes

-- Timescales: From the earliest epochs to the present day
Timescales From the Earliest Epochs to the Present Day
See in-class notes

In a mock-calendar where the age of the Universe (13.7 Gyr) is represented by one year, from Jan 1 to Dec 31

the time where evolved Homo Sapiens appear (600,000 yrs ago) would be in the last 23 min of Dec 31.

the time when agriculture/civilization developed (11,000 yrs ago) would be in the last 25 seconds of Dec 31, a mere blink of an eye away.

the epoch of major cultural and scientific development (400 yrs) would be in the last second of Dec 31.
The Last 400 years: A Privileged Era

The last century: tremendous progress in astronomy and astrophysics mapping the origin and evolution of the Universe

Kepler and Galileo, Newton’s law of Gravity; Einstein’s theory of relativity; Hubble shows the Universe is expanding; Cosmic Microwave background discovered and COBE launched. Dark matter and dark energy discovered; Hubble and other NASA Great Observatories launched, Cutting edge galaxy surveys to look back in time at the first galaxies
NASA’s Three Great Observatories

- Hubble Space Telescope (HST) launched in 1990
 Works at ultraviolet, optical and infrared wavelengths

- Chandra X-ray Observatory (CXO) launched in 1999: Works at X-ray wavelengths

- Spitzer Space Telescope (SST) launched in 2004: Works at mid to far infrared wavelengths: penetrates the dust
The Hubble Ultra Deep Field (HUDF) Survey in 2004

HUDF is the deepest visible-light image of the Universe.

In 2004, the HUDF team proposed the HUDF legacy project and carried the technical planning and observations of the HUDF.

Exposures totaling a million seconds were taken with the Advanced camera for Surveys (ACS) on the Hubble Space Telescope.

HUDF team

- Steve Beckwith
- John Caldwell
- Mark Clampin
- Michael Corbin
- Mark Dickinson
- Harry Ferguson
- Andy Fruchter
- Richard Hook
- Sharda Jogee
- Anton Koekemoer
- Ray Lucas
- Sangeeta Malhotra
- Mauro Giavalisco
- Nino Panagia
- James Rhoads
- Massimo Stiavelli
- Rachel Somerville
- Stefano Casertano
- Bruce Margon
- Chris Blades
- Massimo Robberto
- Megan Sosey
- Eddie Bergeron
HUDF allows us to look back about 12 Gyr in time....out to epochs when the Universe was merely 5% of its present age.
Astro 301/ Fall 2006
(50405)

Introduction to Astronomy
http://www.as.utexas.edu/~sj/a301-fa06

Instructor: Professor Shardha Jogee
TAs: Biqing For, Candace Gray, Irina Marinova

Lecture 7: Th Sep 21
Announcements (Lec 7)

See current Announcements on class website
http://www.as.utexas.edu/~sj/a301-fa06/

Hwk1 and quiz 2
Recent and upcoming topics in class

--- The QEDEx tips for understanding and applying laws or formulae

--- The Four Fundamental Forces
- The Force of Gravity: Newton’s Universal Law of Gravitation
 Einstein’s theory of general relativity vs Newton’s law of gravity

- Electromagnetic Forces
- The Strong force
- The Weak force
- Relative importance of the 4 forces: when and where do they matter?
 - attractive vs repulsive
 - long range vs short range
Four Fundamental Forces
Newtons’ Universal Law of Gravitation

\[F_g = G \frac{M_1 M_2}{d^2} \]

See in class notes: the QEDEEx tips for understanding and applying laws or formulae
Newton’s Law of Gravity and Laws of Motion

Sir Isaac Newton (1642-1727)
Born in England

- Student (1661); Lucasian Professor of Mathematics (1669) at Trinity College, Cambridge Univ
- Unified “the Earth and the Heavens” with his laws of gravity and motion (1665-1666)
- Published “Principia” (Mathematical Principles of Natural Philosophy) in 1687
Einstein’s theory of General Relativity

Abell 2218 cluster of galaxies (Region shown = 1.4 x 10^6 lyr)

Gravitational lenses observed explained by Einstein’s theory of General Relativity, but not by Newton’s law of gravity
Albert Einstein
- Theory of Special Relativity 1905
- Theory of General Relativity 1916
- The Nobel Prize in Physics 1921
Forces within the nucleus of an atom

The nucleus is nearly 100,000 times smaller than the atom but contains nearly all of its mass.

Nucleus: Contains positively charged protons (red) and neutral neutrons (gray).

A carbon nucleus = 6p+ and 6n

A carbon atom is made of 6 e-orbiting a tiny carbon nucleus

--- See in-class notes: Forces acting are gravity, EM between e- p+, EM between p+ p+, Strong Forces, Weak Forces
Forces within the nucleus of an atom

The nucleus is nearly 100,000 times smaller than the atom but contains nearly all of its mass.

A carbon nucleus = 6p+ and 6n

A carbon atom is made of 6 e- orbiting a tiny carbon nucleus

-- See in-class notes: Forces acting are gravity, EM between e- p+, EM between p+ p+, Strong Forces, Weak Forces